The citizen-science-based environmental survey can benefit from the smartphone technology used in chemical and biological sensing of a wide range of analytes. Quantification by smartphone-based colorimetric assays is being increasingly reported, however, most of the quantification uses empirical formula or complex exhaustive methods. In this study, a versatile and robust algorithm is proposed to overcome these limitations. A model is established to simulate and analyze the conversion process from the camera's spectral information into RGB (Red, Green, Blue) color information. Moreover, the feasibility of the algorithm for the quantification of different analytes is also explored. Based on this algorithm, a versatile smartphone-based environmental analyzer (vSEA) is built and its reliability, versatility, and analytical performance are comprehensively optimized. The good linearity (R ≥ 0.9954) and precision (relative standard deviations < 5.3%) indicates that the vSEA is accurate enough to quantify the nutrients in most natural waters. Furthermore, the vSEA is used for the field measurement of five important nutrients, and the results show no significant difference compared to conventional methods. The vSEA offers a simpler and easier method for the on-site measurement of nutrients in natural water bodies, which can aid in the emergency monitoring of aqueous ecosystems and the performance of citizen-science-based research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.156197 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!