Ablation of Liver X receptor β in mice leads to overactive macrophages and death of spiral ganglion neurons.

Hear Res

Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States; Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Stockholm 14186, Sweden. Electronic address:

Published: September 2022

Age-related hearing loss is the most common type of hearing impairment, and is typically characterized by the loss of spiral ganglion neurons (SGNs). The two Liver X receptors (LXRs) are oxysterol-activated nuclear receptors which in adults, regulate genes involved in cholesterol homeostasis and modulation of macrophage activity. LXRβ plays a key role in maintenance of health of dopaminergic neurons in the substantia nigra, large motor neurons in the spinal cord, and retinal ganglion cells in adult mice. We now report that LXRβ is expressed in the SGNs of the cochlea and that loss of LXRβ leads to age-related cochlea degeneration. We found that in the cochlea of LXRβ mice, there is loss of SGNs, activation of macrophages, demyelination in the spiral ganglion, decrease in glutamine synthetase (GS) expression and increase in glutamate accumulation in the cochlea. Part of the cause of damage to the SGNs might be glutamate toxicity which is known to be very toxic to these cells. Our study provides a so far unreported role of LXRβ in maintenance of SGNs whose loss is a very common cause of hearing impairment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.heares.2022.108534DOI Listing

Publication Analysis

Top Keywords

spiral ganglion
12
ganglion neurons
8
loss common
8
hearing impairment
8
loss
5
sgns
5
lxrβ
5
ablation liver
4
liver receptor
4
receptor mice
4

Similar Publications

Background: Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide. Current solutions for SNHL, including hearing aids, cochlear implants, and hearing assistive devices, do not provide consistent results and fail to address the underlying pathology of hair cell and ganglion cell damage. Stem cell therapy is a cornerstone in regenerative medicine.

View Article and Find Full Text PDF

Loss of Fascin2 increases susceptibility to cisplatin-induced hearing impairment and cochlear cell apoptosis in mice.

J Otol

July 2024

Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China.

Objectives: Deletion of gene in mice has been linked to progressive hearing loss and degeneration of cochlear cells. Cisplatin, an antitumor drug, can cause various side effects, including ototoxicity. The aim of this study was to investigate the effects of on cisplatin-induced hearing impairment in mice and to explore the possible mechanism.

View Article and Find Full Text PDF

The use of optogenetic tools offers an excellent method for spatially and temporally regulated gene and protein expression in cell therapeutic approaches. This could be useful as a concomitant therapeutic measure, especially in small body compartments such as the inner ear, for example, during cochlea implantation, to enhance neuronal cell survival and function. Here, we used the blue light activatable CRY2/CIB system to induce transcription of brain-derived neurotrophic factor (BDNF) in human cells.

View Article and Find Full Text PDF

To encode continuous sound stimuli, the inner hair cell (IHC) ribbon synapses utilize calcium-binding proteins (CaBPs), which reduce the inactivation of their Ca1.3 calcium channels. Mutations in the gene underlie non-syndromic autosomal recessive hearing loss DFNB93.

View Article and Find Full Text PDF

Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca channels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!