Natamycin was encapsulated in gliadin-casein nanoparticles (G-C NPs) to control black rot in cherry tomato against Alternaria alternata. The G-C NPs with a mean particle diameter of 211 ± 4 nm were prepared using an anti-solvent method. The composite NPs showed better stability against neutral pH, ion, and storage than gliadin NPs. The quenching of gliadin by natamycin was static with a constant of 5.99 × 10 M∙S, and was spontaneous with a free energy of -23.5 kJ∙M at 298 K. Both hydrophobic stacking and hydrogen bonds between natamycin and gliadin were found as the major driven force in the formation of the complex. The NPs kept the antifungal activity of natamycin with improved photostability. The NPs coatings exhibited better results than natamycin in controlling black rot on cherry tomato. This study shows the potential of the G-C NPs as all-natural delivery systems for natamycin in post-harvest treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2022.133288DOI Listing

Publication Analysis

Top Keywords

cherry tomato
12
g-c nps
12
gliadin-casein nanoparticles
8
black rot
8
rot cherry
8
natamycin
7
nps
7
fabrication colloidal
4
colloidal stable
4
stable gliadin-casein
4

Similar Publications

This study introduces a non-destructive, quantitative method using low-field MRI to assess moisture mobility and content distribution in cherry tomatoes. This study developed an advanced 3D non-local mean denoising model to enhance tissue feature analysis and applied an optimized TransUNet model for structural segmentation, obtaining multi-echo data from six tissue types. The structural T2 relaxation inversion was refined by integrating an ACS-CIPSO algorithm.

View Article and Find Full Text PDF

<b>Background and Objective:</b> Prolonged utilization of chemical fertilizers can harm the soil and disturb the equilibrium of nutrients, resulting in a decline in cherry tomato yield. To enhance the growth of cherry tomato plants, it is necessary to add organic chemicals. The research aimed to determine the best elicitor biosaka concentration to apply to evoke the plant growth of cherry tomatoes (<i>Solanum lycopersicum</i> L.

View Article and Find Full Text PDF

Characterization of a biocomposite film using coconut jelly powder to improve arrowroot starch and sodium alginate film forming properties.

Int J Biol Macromol

December 2024

Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia. Electronic address:

Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato.

View Article and Find Full Text PDF

Background: Fresh vegetables are commodities that have a high tendency to deteriorate after harvest, causing significant losses in economic and environmental costs associated with plant food loss. Therefore, this study was carried out to evaluate the effects of both un-irradiated (UISA) and irradiated sodium alginate (ISA) as an edible coating for preserving cherry tomato fruits under storage conditions. The FTIR, XRD, TGA, SEM, and TEM were used to characterize the UISA and ISA (25, 50, 75, and 100 kGy), which demonstrated that the alginate polymer was degraded and low molecular-weight polysaccharides were formed as a result of irradiation, particularly with the 100 kGy dose level.

View Article and Find Full Text PDF

This study investigated the effects of varying concentrations of peanut shell flavonoids (PSFs) on the properties of peanut meal extract-tilapia skin protein composite films and their impact on cherry tomatoes preservation. Peanut meal alcohol extract (Pe) and tilapia skin protein (Co) were used as base materials, combined with PSFs to prepare composite films with excellent antioxidant properties. The results demonstrated that the optimized composite films exhibited superior mechanical properties, with a tensile strength of 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!