Deep learning accurately predicts food categories and nutrients based on ingredient statements.

Food Chem

U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, 10300 Baltimore Ave, Bldg. 005, BARC-WEST, Beltsville, MD 20705, USA.

Published: October 2022

Determining attributes such as classification, creating taxonomies and nutrients for foods can be a challenging and resource-intensive task, albeit important for a better understanding of foods. In this study, a novel dataset, 134 k BFPD, was collected from USDA Branded Food Products Database with modification and labeled with three food taxonomy and nutrient values and became an artificial intelligence (AI) dataset that covered the largest food types to date. Overall, the Multi-Layer Perceptron (MLP)-TF-SE method obtained the highest learning efficiency for food natural language processing tasks using AI, which achieved up to 99% accuracy for food classification and 0.98 R for calcium estimation (0.93 ∼ 0.97 for calories, protein, sodium, total carbohydrate, total lipids, etc.). The deep learning approach has great potential to be embedded in other food classification and regression tasks and as an extension to other applications in the food and nutrient scope.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2022.133243DOI Listing

Publication Analysis

Top Keywords

deep learning
8
food
8
food classification
8
learning accurately
4
accurately predicts
4
predicts food
4
food categories
4
categories nutrients
4
nutrients based
4
based ingredient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!