Acinetobacter baumannii is an important nosocomial and opportunistic pathogen. It causes infections worldwide, especially in intensive care units. It is clinically significant owing to its ability to persist for long periods on surfaces, as well as its resistance to multiple antibiotics. This pathogen has been reported to defy the available therapeutic options to combat it. In this dire circumstance, the need for new approaches to treating A. baumannii infections is undeniable. In this minireview, we summarize three important treatment options for controlling A. baumannii pathogen, including the use of bacteriophage / bacteriophage cocktails, phage-antibiotic combinations and resistance-driven fitness losses. It is hoped that, as resources to treat its infection expand, A. baumannii can become less scary.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micres.2022.127069 | DOI Listing |
The relentless emergence of antibiotic-resistant pathogens, particularly Gram-negative bacteria, highlights the urgent need for novel therapeutic interventions. Drug-resistant infections account for approximately 5 million deaths annually, yet the antibiotic development pipeline has largely stagnated. Venoms, representing a remarkably diverse reservoir of bioactive molecules, remain an underexploited source of potential antimicrobials.
View Article and Find Full Text PDFInfect Chemother
December 2024
Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Crete, Greece.
Background: Lower respiratory tract infections (LRTIs) are the most common infections in humans accounting for significant morbidity and mortality. Management of LRTIs is complicated due to increasing antimicrobial resistance. This study investigated the prevalence and trends of antimicrobial resistance for bacteria isolated from respiratory samples of patients with LRTIs.
View Article and Find Full Text PDFAm J Infect Control
January 2025
Nursing School, Universidade Estadual de Campinas (Unicamp), Faculdade de Enfermagem - Universidade Estadual de Campinas (Unicamp). Rua Tessália Vieira de Camargo, 126 - Cidade Universitária Zeferino Vaz. CEP 13083-887, Campinas, São Paulo, Brazil. Electronic address:
Background: The presence of microorganisms in laryngoscopes emphasizes the risk to patient safety during orotracheal intubations.
Methods: Cross-sectional study was carried out in university hospital in the inpatient, emergency, intensive care and surgical center sectors. Microorganisms were recovered from the blades using a filter membrane and from the handles using swab.
Front Med (Lausanne)
December 2024
National Clinical Research Centre for Infectious Diseases, Shenzhen Third People's Hospital and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.
Infect Drug Resist
December 2024
Subdean Office, Anqing First People's Hospital of Anhui Medical University, Anqing City, Anhui Province, People's Republic of China.
Purpose: To evaluate the clinical characteristics, antimicrobial resistance (AMR) phenotypes and genotypes, and homology features of carbapenem-resistant (CRAB) in intensive care unit (ICU) and to provide basis for effectively prevention, control and treatment of nosocomial infections caused by CRAB.
Methods: A total of 39 CRAB strains isolated from hospitalized patients in the ICU and neurosurgical ICU (NICU) between 2020 and 2023 were subjected to antimicrobial susceptibility testing and whole-genome sequencing (WGS). Virulence factor genes (VFGs), antimicrobial resistance genes (ARGs), multilocus sequencing typing (MLST), complete genome multilocus sequencing typing (cgMLST), average nucleotide identity (ANI), and single nucleotide polymorphism (SNP) analyses were performed using WGS.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!