Background: Although early diagnosis and management are critical for prognosis of pediatric sepsis, there are no specific diagnostic biomarkers for the hyperinflammatory state and organ dysfunction, important stages of sepsis.
Methods: We enrolled 129 children with infection into three groups: non-sepsis infection (33), Sepsis 1.0 (hyperinflammatory state, 67), and Sepsis 3.0 (organ dysfunction, 29). Another 32 children with no infections were included as controls. Serum C-reactive protein (CRP), procalcitonin (PCT), interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17, tumor necrosis factor (TNF)-α, interferon (IFN)-α, and IFN-γ were assessed to diagnose the two stages, and their diagnostic capacities were evaluated using receiver operating characteristic (ROC) curves. We also examined whether combining biomarkers improved diagnostic efficiency.
Results: Significantly higher CRP, PCT, and IL-6 levels were detected in the Sepsis 1.0 than the non-sepsis infection group (p < 0.001). The areas under the curve (AUCs) for diagnosing Sepsis 1.0 were 0.974 (CRP), 0.913 (PCT) and 0.919 (IL-6). A combination of any two biomarkers increased diagnostic sensitivity to ≥92.54% and specificity to 100.00%. Significantly higher PCT, IL-8, and IL-10 levels were found in the Sepsis 3.0 than the Sepsis 1.0 group (p ≤ 0.01), with AUCs for diagnosing Sepsis 3.0 0.807 (PCT), 0.711 (IL-8), and 0.860 (IL-10). Combining these three biomarkers increased diagnostic sensitivity to 96.55% and specificity to 94.03%.
Conclusion: In pediatric sepsis, combining any two of CRP, PCT, and IL-6 can accurately diagnose the hyperinflammatory state and increase diagnostic specificity. Early diagnosis of organ dysfunction requires a combination of PCT, IL-8, and IL-10.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279984 | PMC |
http://dx.doi.org/10.1002/jcla.24505 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!