Sexual differences in human brain development could be relevant to sex differences in the incidence of depression during adolescence. We tested for sex differences in parameters of normative brain network development using fMRI data on = 298 healthy adolescents, aged 14 to 26 years, each scanned one to three times. Sexually divergent development of functional connectivity was located in the default mode network, limbic cortex, and subcortical nuclei. Females had a more "disruptive" pattern of development, where weak functional connectivity at age 14 became stronger during adolescence. This fMRI-derived map of sexually divergent brain network development was robustly colocated with i prior loci of reward-related brain activation ii a map of functional dysconnectivity in major depressive disorder (MDD), and iii an adult brain gene transcriptional pattern enriched for genes on the X chromosome, neurodevelopmental genes, and risk genes for MDD. We found normative sexual divergence in adolescent development of a cortico-subcortical brain functional network that is relevant to depression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140984 | PMC |
http://dx.doi.org/10.1126/sciadv.abm7825 | DOI Listing |
Mol Ecol
December 2024
School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
Biochemical and evolutionary interactions between mitochondrial and nuclear genomes ('mitonuclear interactions') are proposed to underpin fundamental aspects of biology including evolution of sexual reproduction, adaptation and speciation. We investigated the role of pre-mating isolation in maintaining functional mitonuclear interactions in wild populations bearing diverged, putatively co-adapted mitonuclear genotypes. Two lineages of eastern yellow robin Eopsaltria australis-putatively climate-adapted to 'inland' and 'coastal' climates-differ by ~7% of mitogenome nucleotides, whereas nuclear genome differences are concentrated into a sex-linked region enriched with mitochondrial functions.
View Article and Find Full Text PDFNat Ecol Evol
December 2024
School of Biosciences, University of Sheffield, Sheffield, UK.
Sexual size dimorphism (SSD) is highly prevalent in nature. Several hypotheses aim to explain its evolution including sexual selection, differential equilibrium and ecological niche divergence. Disentangling the causal mechanism behind the evolution of SSD is challenging, as selection arising from multiple pressures on fitness may act simultaneously to generate observed patterns.
View Article and Find Full Text PDFEvolution
December 2024
Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, New South Wales, Australia.
Facultatively parthenogenetic animals could help reveal the role of sexual conflict in the evolution of sex. Although each female can reproduce both sexually (producing sons and daughters from fertilized eggs) and asexually (typically producing only daughters from unfertilized eggs), these animals often form distinct sexual and asexual populations. We hypothesized that asexual populations are maintained through female resistance as well as the decay of male traits.
View Article and Find Full Text PDFPeerJ
December 2024
Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
, the earliest known ceratopsian, is represented by dozens of specimens of different sizes collected from the Upper Jurassic of the Junggar Basin, northwestern China. Here, we present the first comprehensive study on the bone histology of based on ten specimens varying in size. Four ontogenetic stages are recognized: early juvenile, late juvenile, subadult, and adult.
View Article and Find Full Text PDFFly (Austin)
December 2025
Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK.
and are a sister species pair that have been used as a model for studies of reproductive isolation and speciation for almost 100 years owing to their close evolutionary history, well characterized genetic differences, and overlapping geographic distribution. There are extensive analyses of both pre- and post-zygotic isolation, including studies of courtship divergence, conspecific sperm precedence (CSP) and how reinforcement by natural selection may or may not act to strengthen isolation in sympatry. Post-zygotic analyses explore the underlying mechanics of reproductive isolation; how inversions may give rise to initial speciation events and misexpression of key genes typically found within inversion regions render hybrid offspring unfit or inviable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!