Deep convolutional neural networks have been leveraged to achieve huge improvements in video understanding and human activity recognition performance in the past decade. However, most existing methods focus on activities that have similar time scales, leaving the task of action recognition on multiscale human behaviors less explored. In this study, a two-stream multiscale human activity recognition and anticipation (MS-HARA) network is proposed, which is jointly optimized using a multitask learning method. The MS-HARA network fuses the two streams of the network using an efficient temporal-channel attention (TCA)-based fusion approach to improve the model's representational ability for both temporal and spatial features. We investigate the multiscale human activities from two basic categories, namely, midterm activities and long-term activities. The network is designed to function as part of a real-time processing framework to support interaction and mutual understanding between humans and intelligent machines. It achieves state-of-the-art results on several datasets for different tasks and different application domains. The midterm and long-term action recognition and anticipation performance, as well as the network fusion, are extensively tested to show the efficiency of the proposed network. The results show that the MS-HARA network can easily be extended to different application domains.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2022.3175480DOI Listing

Publication Analysis

Top Keywords

multiscale human
16
human activity
12
activity recognition
12
recognition anticipation
12
ms-hara network
12
network
8
action recognition
8
application domains
8
recognition
5
multiscale
4

Similar Publications

Multi scale multi attention network for blood vessel segmentation in fundus images.

Sci Rep

January 2025

Department of Data Science and Artificial Intelligence, Sunway University, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia.

Precise segmentation of retinal vasculature is crucial for the early detection, diagnosis, and treatment of vision-threatening ailments. However, this task is challenging due to limited contextual information, variations in vessel thicknesses, the complexity of vessel structures, and the potential for confusion with lesions. In this paper, we introduce a novel approach, the MSMA Net model, which overcomes these challenges by replacing traditional convolution blocks and skip connections with an improved multi-scale squeeze and excitation block (MSSE Block) and Bottleneck residual paths (B-Res paths) with spatial attention blocks (SAB).

View Article and Find Full Text PDF

As people's material living standards continue to improve, the types and quantities of household garbage they generate rapidly increase. Therefore, it is urgent to develop a reasonable and effective method for garbage classification. This is important for resource recycling and environmental improvement and contributes to the sustainable development of production and the economy.

View Article and Find Full Text PDF

Objective: Disorders of arousal (DoA) are characterized by an intermediate state between wakefulness and deep sleep, leading to incomplete awakenings from NREM sleep. Multimodal studies have shown subtle neurophysiologic alterations even during wakefulness in DoA. The aim of this study was to explore the brain functional connectivity in DoA and the metabolic profile of the anterior and posterior cingulate cortex, given its pivotal role in cognitive and emotional processing.

View Article and Find Full Text PDF

Antiandrogen therapies are effectively used to treat advanced prostate cancer, but eventually cancer adaptation drives unresolved metastatic castration-resistant prostate cancer (mCRPC). Adipose tissue influences metabolic reprogramming in cancer and was proposed as a contributor to therapy resistance. Using extracellular matrix (ECM)-mimicking hydrogel coculture models of human adipocytes and prostate cancer cells, we show that adipocytes from subcutaneous or bone marrow fat have dissimilar responses under the antiandrogen Enzalutamide.

View Article and Find Full Text PDF

Sleep and circadian rhythms are regulated by dynamic physiologic processes that operate across multiple spatial and temporal scales. These include, but are not limited to, genetic oscillators, clearance of waste products from the brain, dynamic interplay among brain regions, and propagation of local dynamics across the cortex. The combination of these processes, modulated by environmental cues, such as light-dark cycles and work schedules, represents a complex multiscale system that regulates sleep-wake cycles and brain dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!