The honeybee is highly appreciated worldwide because of its products, but also as it is a pollinator of crops and wild plants. The beehive is vulnerable to infections due to arthropods, fungi, protozoa, bacteria and/or viruses that manage to by-pass the individual and social immune mechanisms of bees. Due to the close proximity of bees in the beehive and their foraging habits, infections easily spread within and between beehives. Moreover, international trade of bees has caused the global spread of infections, several of which result in significant losses for apiculture. Only in a few cases can infections be diagnosed with the naked eye, by direct observation of the pathogen in the case of some arthropods, or by pathogen-associated distinctive traits. Development of molecular methods based on the amplification and analysis of one or more genes or genomic segments has brought significant progress to the study of bee pathogens, allowing for: (i) the precise and sensitive identification of the infectious agent; (ii) the analysis of co-infections; (iii) the description of novel species; (iv) associations between geno- and pheno-types and (v) population structure studies. Sequencing of bee pathogen genomes has allowed for the identification of new molecular targets and the development of specific genotypification strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9145064 | PMC |
http://dx.doi.org/10.3390/vetsci9050221 | DOI Listing |
Microrna
January 2025
Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 20130, India.
MicroRNA (miRNA) modulation has emerged as a promising strategy in cancer immunotherapy, particularly in converting "cold" tumors with limited immune cell infiltration into "hot" tumors responsive to immunotherapy. miRNAs regulate immune cell recruitment and activation within the tumor microenvironment, influencing tumor behavior targeting specific miRNAs in cold tumors aims to enhance the immune response, potentially improving therapeutic efficacy. Despite ongoing research challenges, such as tumor complexity and treatment resistance, miRNA-based therapies offer personalized approaches with potential ethical considerations.
View Article and Find Full Text PDFACS Sens
January 2025
College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
Circular RNAs (circRNAs), as a class of noncoding RNA molecules with a circular structure exhibit high stability and spatiotemporal-specific expression, making them ideal cancer biomarkers for liquid biopsy. Herein, a new photoelectrochemical (PEC) biosensor for a highly sensitive circRNA assay in the whole blood of lung cancer patients was designed based on CRISPR/Cas13a-programmed Cu nanoclusters (Cu NCs) and a -scheme covalent organic framework/silver sulfide (T-COF/AgS) composite. This -scheme T-COF/AgS composite accelerates electron transfer and produces an excellent initial photocurrent.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
Introduction: (Hook.f. & Thomson) H.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
The stomatal phenotype is a crucial microscopic characteristic of the leaf surface, and modulating the stomata of maize leaves can enhance photosynthetic carbon assimilation and water use efficiency, thereby playing a vital role in maize yield formation. The evolving imaging and image processing technologies offer effective tools for precise analysis of stomatal phenotypes. This study employed Jingnongke 728 and its parental inbred to capture stomatal images from various leaf positions and abaxial surfaces during key reproductive stages using rapid scanning electron microscopy.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Sepsis-associated encephalopathy (SAE) is a severe and frequent septic complication, characterized by neuronal damage as key pathological features. The astrocyte-microglia crosstalk in the central nervous system (CNS) plays important roles in various neurological diseases. However, how astrocytes interact with microglia to regulate neuronal injury in SAE is poorly defined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!