AbstractAlthough heterothermy is employed by species at a global level within the order of Chiroptera (bats), the possibility of torpor being expressed in bat species inhabiting warmer climate zones has been explored only in the past couple decades. Recent studies suggest that the benefit of expressing torpor is not limited to saving energy during cold exposure or food shortage but may be just as important for saving water during heat waves. Thus, even if the physiological challenges faced by bats may depend on the habitat they live in, species expressing torpor should be found in any climate zone where employing torpor may yield benefits and increase their survival probability. Here, we summarize available data on torpor metabolic rates and daily skin temperature patterns of bats across climate zones, emphasizing similarities found in the data. We also present data that we have collected from a southern subtropical species () and a northern subarctic species () to illustrate specific examples of torpor expressions in two bat species living in highly different environments. Our findings highlight that torpor metabolic rates and skin temperature patterns of bats outside of the hibernation season can be universal across vastly different habitats, although arid environments indicate potential divergence in mean minimum torpor metabolic rates compared with measurements of populations inhabiting other climate zones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/720273 | DOI Listing |
PLoS One
January 2025
Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
In this comprehensive analysis of Chile's air quality dynamics spanning 2016 to 2021, the utilization of data from the National Air Quality Information System (SINCA) and its network of monitoring stations was undertaken. Quintero, Puchuncaví, and Coyhaique were the focal points of this study, with the primary objective being the construction of predictive models for sulfur dioxide (SO2), fine particulate matter (PM2.5), and coarse particulate matter (PM10).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China.
Traditional window glazing, with inherently adverse energy-efficient optical properties, leads to colossal energy losses. Energy-saving glass requires a customized optical design for different climate zones. Compared with the widely researched radiative cooling technology which is preferable to be used in low-altitude hot regions; conversely in high-latitude cold regions, high solar transmittance (T) and low mid-infrared thermal emissivity (ε) are the key characteristics of high-performance radiative warming window glass, while the current low-emissivity (low-e) glass is far from ideal.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54000, Pakistan.
Rapid urbanization in Lahore has dramatically transformed land use and land cover (LULC), significantly impacting the city's thermal environment and intensifying climate change and sustainable development challenges. This study aims to examine the changes in the urban landscape of Lahore and their impact on the Urban thermal environment between 1990 and 2020. The previous studies conducted on Lahore lack the application of Geospatial artificial intelligence (GeoAI) to quantify land use and land cover, which is successfully covered in this study.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China.
Understanding plant adaptations in extreme environments is crucial, as these adaptations often confer advantages for survival. However, a significant gap exists regarding the genetic mechanisms underlying these adaptations and their responses to human-induced rapid environmental change (HIREC). This study addresses the question of whether genetic convergence occurs among plants with similar adaptive features, specifically focusing on isobilateral leaves in mangrove species.
View Article and Find Full Text PDFIntroduction: The increase in vapor pressure deficit (VPD) is among the expected change in futur climate, and understanding its effect on crop growth is of much significance for breeeding programs. Three groups (G1,G2 and G3) of pearl millet germplasm, originating from regions with different rainfall intensities, were grown in the field during period of high and low VPDs. The groups G1,G2 and G3 were respectively from Guinean (rainfall above 1000 mm), Soudanian (rainfall between 600 mm and 900 mm), and Sahelian zones (rainfall between 600 and 300 mm) of Africa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!