ARTP and NTG compound mutations improved Cry protein production and virulence of Bacillus thuringiensis X023.

Appl Microbiol Biotechnol

Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China.

Published: June 2022

A high production mutated strain Bacillus thuringiensis X023PN (BtX023PN) was screened from the wild strain Bacillus thuringiensis X023 (BtX023) after atmospheric and room temperature plasma (ARTP) and nitrosoguanidine (NTG) mutation. BtX023PN grows faster than the wild strain, and its lysis of mother cell was 6 h ahead BtX023, but the ability of sporulation was significantly reduced. Bioassay indicated that compared with the wild type strain, the virulence of BtX023PN against Plutella xylostella (P. xylostella) and Mythimna seperata (M. seperata) increased to 2.33-fold and 2.13-fold respectively. qRT-PCR and SDS-PAGE demonstrated that the production of Cry1Ac increased by 61%. Resequence indicated that the mutated sites enriched on the key carbohydrate metabolism and amino acid metabolism. This study provides a new strain resource for the development of Bt insecticides and a feasible technical strategy for the breeding of Bt. KEY POINTS: • Atmospheric and room temperature plasma used in breeding of Bacillus thuringiensis. • Less stationary phase time with more ICP production. • Semi-lethal concentration against Plutella xylostella reduced by about 57.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-022-11983-2DOI Listing

Publication Analysis

Top Keywords

bacillus thuringiensis
16
thuringiensis x023
8
strain bacillus
8
wild strain
8
atmospheric room
8
room temperature
8
temperature plasma
8
plutella xylostella
8
strain
5
artp ntg
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!