Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The new hohlraum experimental platform and the quasi-3D simulation model are developed to enable the study of the indirect drive experiment using the six-cylinder-port hohlraum for the first time. It is also the first implosion experiment for the six laser-entrance-hole hohlraum to effectively use all the laser beams of the laser facility that is primarily designed for the cylindrical hohlraum. The experiments performed at the 100 kJ Laser Facility produce a peak hohlraum radiation temperature of ∼222 eV for ∼80 kJ and 2 ns square laser pulse. The inferred x-ray conversion efficiency η∼87% is similar to the cylindrical hohlraum and higher than the octahedral spherical hohlraum at the same laser facility, while the low laser backscatter is similar to the outer cone of the cylindrical hohlraum. The hohlraum radiation temperature and M-band (>1.6 keV) flux can be well reproduced by the quasi-3D simulation. The variations of the yield-over-clean and the hot spot shape can also be semiquantitatively explained by the calculated major radiation asymmetry of the quasi-3D simulation. Our work demonstrates the capability for the study of the indirect drive with the six-cylinder-port hohlraum at the cylindrically configured laser facility, which is essential for numerically assessing the laser energy required by the ignition-scale six-cylinder-port hohlraum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.128.195001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!