Arthropod Pest Management in Strawberry.

Insects

Department of Entomology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, USA.

Published: May 2022

The strawberry crop endures economic losses due to feeding injury from a number of phytophagous arthropod pests. A number of invasive pests have posed challenges to crop protection techniques in the strawberry cropping system recently. It is increasingly evident that sole reliance on chemical control options is not sustainable. In this review, current challenges and advances in integrated pest management of various strawberry pests are presented. Key pests discussed include thrips, mites, lygus bug, spotted wing drosophila, seed bug, weevils, aphids, whiteflies, and armyworms. Several integrated pest management techniques that include use of intercropping, resistant cultivars, irradiation with gamma rays, use of spectral sensitivity of pests, biological control agents and natural enemies, and biorational pesticides have recently been reported to be useful in managing the various strawberry pests. With the increase in world production of strawberry, several techniques will be necessary to manage the pest complex of strawberry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147324PMC
http://dx.doi.org/10.3390/insects13050475DOI Listing

Publication Analysis

Top Keywords

pest management
12
management strawberry
8
integrated pest
8
strawberry pests
8
strawberry
7
pests
6
arthropod pest
4
strawberry strawberry
4
strawberry crop
4
crop endures
4

Similar Publications

Soil application of dazomet combined with 1,3-dichloropropene against soilborne pests for tomato production.

Sci Rep

December 2024

State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.

There is a growing problem in China, whereby tomato replant disease is being affected by Fusarium spp., Meloidogyne spp., and Phytophthora spp.

View Article and Find Full Text PDF

Evaluation of resistance and molecular detection of resistance genes to wheat stripe rust of 82 wheat cultivars in Xinjiang, China.

Sci Rep

December 2024

Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, China.

Wheat stripe rust is a fungal disease caused by Puccinia striiformis f. sp. tritici.

View Article and Find Full Text PDF

Recent changes in climate and environments have promoted the range expansion of insect pests of tropical and subtropical origins into temperate regions. For more accurate and faster risk assessment of this expansion, we developed a novel indicator to link a physiologically derived parameter of chilling injury with the survival of insect populations in nature by using two insects, Spodoptera frugiperda and Cicadulina bipunctata with tropical and subtropical origins, and one cool-adapted insect, Laodelphax striatellus. The parameter derived from a proportional increment in the time to 99.

View Article and Find Full Text PDF

The OsMAPK6-OsWRKY72 module positively regulates rice leaf angle through brassinosteroid signals.

Plant Commun

December 2024

Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan' Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

Leaf angle is a major agronomic trait that determines plant architecture, which directly affects rice planting density, photosynthetic efficiency, and yield. The plant phytohormones brassinosteroids (BRs) and the MAPK signaling cascade are known to play crucial roles in regulating the leaf angle, but the underlying molecular mechanisms are not fully understood. Here, we report a rice WRKY family transcription factor gene, OsWRKY72, which positively regulates leaf angle by affecting lamina joint development and BR signaling.

View Article and Find Full Text PDF

Background: Plant diseases caused by plant pathogens pose a great threat to biodiversity and food security, and the problem of drug resistance caused by traditional antibiotics and fungicides is becoming more and more serious. It is urgent to develop new antibacterial molecules with low toxicity and high efficiency. Marinoquinoline A is an alkaloid isolated from marine actinomycetes and has a variety of pharmacological activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!