In the field of actuator materials, hydrogels that undergo large volume changes in response to external stimuli have been developed for a variety of promising applications. However, most conventional hydrogels are brittle and therefore rupture when they are stretched to moderate strains (~50%). Thus, gels to be used for actuators still require improved mechanical properties and actuation performance. In this study, we synthesized a tough and thermo-sensitive hydrogel with a large actuation force by forming interpenetrating networks between covalently crosslinked poly(N-isopropylacrylamide) and ionically crosslinked alginate. Poly(N-isopropylacrylamide) was used as a thermo-sensitive actuation material, and alginate was found to enhance the mechanical properties of the hydrogels. Due to the enhanced elastic modulus and energy dissipation in the hybrid gel, the toughness was increased by a factor of 60 over that of pure PNIPAAm gel. Further, based on the results showing that the hybrid gel exhibits an actuation force that is seven times higher than that of pure PNIPAAm gel, the hybrid gel is more applicable to real actuators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140800PMC
http://dx.doi.org/10.3390/gels8050324DOI Listing

Publication Analysis

Top Keywords

hybrid gel
12
mechanical properties
8
actuation force
8
pure pnipaam
8
pnipaam gel
8
gel
5
fracture toughness
4
toughness blocking
4
blocking force
4
force temperature-sensitive
4

Similar Publications

A POCT assay based on commercial HCG strip for miRNA21 detection by integrating with RCA-HCR cascade amplification and CRISPR/Cas12a.

Mikrochim Acta

January 2025

Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.

A point-of-care testing (POCT) assay based on commercial HCG strip was proposed for miRNA21 detection by integrating RCA-HCR cascaded isothermal amplification with CRISPR/Cas12a. Three modules were integrated in the proposed platform: target amplification module composed of rolling circle amplification (RCA) cascaded with hybridization chain reaction (HCR), signal transduction module composed of CRISPR/Cas12a combined with HCG-agarose gel beads probes, and signal readout module composed of commercial HCG strips. The proposed RCA-HCR-CRISPR/Cas12a-HCG strip assay for miRNA21 detection had high sensitivity, and the limit of detection was as low as 37 fM.

View Article and Find Full Text PDF

This study explores the use of chicken egg white (EW), a rich source of natural proteins, to address challenges in wound healing management. Herein, a novel Zn-infused EW/GelMA (EW/Gel) hybrid hydrogel is developed, featuring an interpenetrating network (IPN) structure, where the first network consists of photo-cross-linked GelMA and the second network consists of Zn-infused EW (Zn-EW) through ion-protein binding. By optimizing the design and formulation, the resulting Zn-EW/Gel hydrogel exhibited enhanced mechanical stability and self-adhesive properties.

View Article and Find Full Text PDF

A series of anionic poly(acrylamide--sodium acrylate)/poly(ethylene glycol), PAN/PEG, hybrids were conveniently synthesized free radical aqueous polymerization by integrating bentonite, kaolin, mica, graphene and silica, following a simple and eco-friendly crosslinking methodology. A comparative perspective was presented on how integrated nanofillers affect the physicochemical properties of hybrid gels depending on the differences in their structures. Among the five types of nanofillers, bentonite-integrated hybrid gel had the highest water absorbency, while graphene-integrated gel had the lowest.

View Article and Find Full Text PDF

Organic/Inorganic Hybrid Cross-Linked Gel Polymer Electrolyte for Optimizing the Solvation Structure of Lithium Ions.

ACS Appl Mater Interfaces

January 2025

Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials and Energy, Foshan University, Foshan 528000, PR China.

Lithium metal electrodes inevitably lead to the decomposition of the liquid electrolyte and lithium dendrite growth, both of which result in the formation of unstable solid electrolyte intermediates (SEIs). Gel polymer electrolytes (GPEs) are expected to replace liquid electrolytes for optimizing the SEI issues of lithium metal. Herein, a cellulose-based gel electrolyte cross-linked by thiol-modified polyhedral oligomeric silsesquioxane (thiol-modified-POSS) was successfully obtained based on "thiol-ene" click chemistry.

View Article and Find Full Text PDF

Synthesis of zirconium-based metal-organic framework/gelatin aerogel for removing phosphate and fluoride from aqueous solutions.

Int J Biol Macromol

January 2025

Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:

This study describes the preparation of novel hybrid aerogels derived from gelatin (Gel), incorporating Br-functionalized zirconium-based metal-organic framework (UiO-66-Br; MOF) as modifying agent to effectively eliminate phosphate and fluoride ions from aqueous environments. The adsorption performance of MOF decorated Gel (Gel-xMOF) hybrid aerogels was investigated under different conditions, including agitation time, adsorbent dosage, solution pH, initial phosphate and fluoride concentrations, coexisting ions, and temperature. The functional groups of the gelatin network, coupled with UiO-66-Br, enhanced the adsorption performance of phosphate and fluoride ions from aqueous solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!