Human umbilical cord mesenchymal stem cells (hUCMSCs) are promising for bone tissue engineering, which have a non-invasive harvesting process, high cell yield, favorable proliferation capacity, and low immunogenicity. However, the osteogenic efficacy of hUCMSCs is relatively lower than that of bone marrow mesenchymal stem cells (BMSCs). Hydrogels from decellularized extracellular matrix (dECM) preserve the biological compositions and functions of natural ECM, which can provide tissue-specific cues to regulate phenotypic expression and cell fate. It is unknown, however, whether hydrogels from periosteum can serve as pro-osteogenic carriers of hUCMSCs. Herein, a decellularized periosteum-derived hydrogel (dPH) was fabricated to reveal the effects of periosteum-specific cues on the bioactivities of hUCMSCs. A widely used non-bone/periosteum-derived ECM hydrogel product, Matrigel, was used as the control group. After decellularization, the absence of nuclei in the histological analysis indicated a successful removal of cellular components, which was also confirmed by DNA content quantification. The storage modulus of dPH increased (from 164.49 ± 29.92 Pa to 855.20 ± 20.67 Pa) with increasing concentration (from 0.5% to 1%). With a highly porous, fibrous microstructure, dPH had a more hydrophilic surface than Matrigel, of which the water contact angle reduced 62.62 ± 0.04%. Furthermore, dPH prominently promoted the initial cellular spreading with a significantly higher cell surface area (1.47-fold), cell spreading length (1.45-fold) and proliferation (approximately 1.05-1.13-fold) of hUCMSCs than those of Matrigel. Additionally, dPH was conducive to cell migration, whereas no cells migrated to Matrigel in the Transwell model. Compared with those of the Matrigel group, the osteogenesis-related genes expression levels (runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN)) and mineralized matrix formation (9.74-fold) of the hUCMSCs significantly increased in the dPH group. Our study indicated that dPH could provide a pro-osteogenic microenvironment for hUCMSCs, thereby revealing a promising application potential to repair bone defects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140703 | PMC |
http://dx.doi.org/10.3390/gels8050294 | DOI Listing |
Cell Transplant
January 2025
Stem Cell Biology and Regenerative Medicine Institution, Yi-Chuang Institute of Bio-Industry, Beijing, China.
Rheumatoid arthritis (RA) is a systemic, chronic inflammatory disease characterized by altered levels of inflammatory cytokines. One of the key cytokines involved in the pathogenesis of RA is tumor necrosis factor α (TNF-α), which plays a crucial role in the differentiation of T cells and B cells and serves as a primary trigger of inflammation and joint damage in RA. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have shown potential in alleviating the symptoms of RA.
View Article and Find Full Text PDFCell Biol Int
January 2025
Department of Thyroid Vascular Surgery, Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China.
Hypoxia is a common phenomenon for solid tumors due to a lack of effective vascular system, and has been deemed as an important factor that drives the progression of thyroid cancer (TC) via altering the characteristics of tumor cells. The present study suggested that hypoxic TC cells enhanced cancer stem cell properties and progression of TC by delivering long intergenic non-protein coding RNA 665 (LINC00665)-containing exosomes. Specifically, TPC1 cells were exposed to normoxic or hypoxic environment, and it was found that hypoxic TPC1 cells-secreted exosomes (H-exo) were enriched with LINC00665, compared to normoxic TPC1 cells-derived exosomes (N-exo).
View Article and Find Full Text PDFFront Immunol
January 2025
Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
Periodontal disease is a highly prevalent disease worldwide that seriously affects people's oral health, including gingivitis and periodontitis. Although the current treatment of periodontal disease can achieve good control of inflammation, it is difficult to regenerate the periodontal supporting tissues to achieve a satisfactory therapeutic effect. In recent years, due to the good tissue regeneration ability, the research on Mesenchymal stromal/stem cells (MSCs) and MSC-derived exosomes has been gradually deepened, especially its ability to interact with the microenvironment of the body in the complex immunoregulatory network, which has led to many new perspectives on the therapeutic strategies for many diseases.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
Introduction: The risk of kidney fibrosis is significantly elevated in individuals with diabetes, chronic nephritis, trauma, and other underlying conditions. Concurrently, human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) and their extracellular vesicles (MSC-Exos) have gained prominence in regenerative medicine. In light of these observations, we are undertaking a meta-analysis to elucidate the influence of hUCB-MSCs and MSC-Exos on kidney fibrosis.
View Article and Find Full Text PDFPurpose: Micro-fragmented adipose tissue is emerging as a promising option for the treatment of various diseases including knee osteoarthritis (OA), though clinical trials are often limited by short follow-up periods. Our aim was to evaluate the safety and clinical outcomes of an arthroscopic debridement followed by a single injection of micro-fragmented adipose tissue in patients affected by knee OA.
Methods: From 2016 to 2020, patients affected by knee OA were enroled.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!