AI Article Synopsis

  • - Mitochondrial complex V is crucial for ATP production, with most of its subunits encoded by nuclear genes; a specific splice variant (c.87+3A>G) in the ATP5PO gene was found in three individuals suspected of having a mitochondrial disorder.
  • - The affected individuals exhibited severe symptoms typical of Leigh syndrome, including developmental issues and cardiomyopathy, and biochemical studies revealed a significant reduction in ATP5PO protein levels and impaired complex V function.
  • - Experimental results indicated that the ATP5PO variant leads to a non-functional protein due to the skipping of an essential exon, confirming its pathogenic role and linking it to defects in mitochondrial energy production.

Article Abstract

Mitochondrial complex V plays an important role in oxidative phosphorylation by catalyzing the generation of ATP. Most complex V subunits are nuclear encoded and not yet associated with recognized Mendelian disorders. Using exome sequencing, we identified a rare homozygous splice variant (c.87+3A>G) in ATP5PO, the complex V subunit which encodes the oligomycin sensitivity conferring protein, in three individuals from two unrelated families, with clinical suspicion of a mitochondrial disorder. These individuals had a similar, severe infantile and often lethal multi-systemic disorder that included hypotonia, developmental delay, hypertrophic cardiomyopathy, progressive epileptic encephalopathy, progressive cerebral atrophy, and white matter abnormalities on brain MRI consistent with Leigh syndrome. cDNA studies showed a predominant shortened transcript with skipping of exon 2 and low levels of the normal full-length transcript. Fibroblasts from the affected individuals demonstrated decreased ATP5PO protein, defective assembly of complex V with markedly reduced amounts of peripheral stalk proteins, and complex V hydrolytic activity. Further, expression of human ATP5PO cDNA without exon 2 (hATP5PO-∆ex2) in yeast cells deleted for yATP5 (ATP5PO homolog) was unable to rescue growth on media which requires oxidative phosphorylation when compared to the wild type construct (hATP5PO-WT), indicating that exon 2 deletion leads to a non-functional protein. Collectively, our findings support the pathogenicity of the ATP5PO c.87+3A>G variant, which significantly reduces but does not eliminate complex V activity. These data along with the recent report of an affected individual with ATP5PO variants, add to the evidence that rare biallelic variants in ATP5PO result in defective complex V assembly, function and are associated with Leigh syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9474623PMC
http://dx.doi.org/10.1002/jimd.12526DOI Listing

Publication Analysis

Top Keywords

leigh syndrome
12
homozygous splice
8
splice variant
8
atp5po
8
complex
8
mitochondrial complex
8
unrelated families
8
oxidative phosphorylation
8
variant atp5po
4
atp5po disrupts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!