To elucidate the potential biological function of hsa_circ_0062270 in the malignant process of melanoma and its potential target. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to examine relative level of hsa_circ_0062270 in melanoma tissues and normal skin tissues. The diagnostic and prognostic potentials of hsa_circ_0062270 in melanoma were evaluated. The regulatory effect of hsa_circ_0062270 on the expression of linear transcript Cell division cycle protein 45 (CDC45) was also examined. Hsa_circ_0062270 was up-regulated in melanoma samples and cell lines, which displayed certain diagnostic and prognostic potentials in melanoma. Inhibition of hsa_circ_0062270 attenuated the proliferative, migratory and invasive functions. Hsa_circ_0062270 could stabilize the expression of linear transcript CDC45, and thus participated in the malignant process of melanoma. Hsa_circ_0062270 promotes proliferative, migratory and invasive functions of melanoma cells stabilizing the linear transcript CDC45. Hsa_circ_0062270 can be used to diagnosis and treatment of melanoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9127359PMC
http://dx.doi.org/10.3389/fgene.2022.897440DOI Listing

Publication Analysis

Top Keywords

linear transcript
16
hsa_circ_0062270
10
melanoma
9
hsa_circ_0062270 promotes
8
stabilizing linear
8
transcript cell
8
cell division
8
division cycle
8
cycle protein
8
malignant process
8

Similar Publications

This study aimed to identify splicing quantitative trait loci (cis-sQTL) in Nelore cattle muscle tissue and explore the involvement of spliced genes (sGenes) in immune system-related biological processes. Genotypic data from 80 intact male Nelore cattle were obtained using SNP-Chip technology, while RNA-Seq analysis was performed to measure gene expression levels, enabling the integration of genomic and transcriptomic datasets. The normalized expression levels of spliced transcripts were associated with single nucleotide polymorphisms (SNPs) through an analysis of variance using an additive linear model with the MatrixEQTL package.

View Article and Find Full Text PDF

Genome-wide association studies (GWASs) have identified numerous genetic variants associated with complex traits, yet the biological interpretation remains challenging, especially for variants in non-coding regions. Expression quantitative trait locus (eQTL) studies have linked these variations to gene expression, aiding in identifying genes involved in disease mechanisms. Traditional eQTL analyses using bulk RNA sequencing (bulk RNA-seq) provide tissue-level insights but suffer from signal loss and distortion due to unaddressed cellular heterogeneity.

View Article and Find Full Text PDF

While the branched DNA (bDNA) assay is an established bioanalytical method for measurement of lipid nanoparticle (LNP)-encapsulated messenger RNA (mRNA) pharmacokinetic parameters, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been considered as an alternative platform. RT-qPCR and bDNA platforms were compared for sensitivity, specificity, correlation, and overall assay performance using serum and tissue samples from 2 nonclinical mouse studies of a therapeutic mRNA candidate, LNP-PAH-mRNA, which encodes for human phenylalanine hydroxylase enzyme. Pharmacokinetic parameter noncompartmental analysis was completed using Phoenix WinNonlin.

View Article and Find Full Text PDF

Functional characterization of eQTLs and asthma risk loci with scATAC-seq across immune cell types and contexts.

Am J Hum Genet

January 2025

Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA. Electronic address:

cis-regulatory elements (CREs) control gene transcription dynamics across cell types and in response to the environment. In asthma, multiple immune cell types play an important role in the inflammatory process. Genetic variants in CREs can also affect gene expression response dynamics and contribute to asthma risk.

View Article and Find Full Text PDF

Therapeutic implications and comprehensive insights into cellular senescence and aging in the tumor microenvironment of sarcoma.

Discov Oncol

January 2025

Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.

Sarcoma (SARC), a diverse group of stromal tumors arising from mesenchymal tissues, is often associated with a poor prognosis. Emerging evidence indicates that senescent cells within the tumor microenvironment (TME) significantly contribute to cancer progression and metastasis. Although the influence of senescence on SARC has been partially acknowledged, it has yet to be fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!