Pathogenic variants in result in abnormal neurodevelopment but limited information is available on the spectrum of neurodevelopmental profiles associated with variations in this gene. We present novel data collected at two time points over a three-year period in a nine-year-old patient with heterozygous de novo variant, drug-resistant epilepsy, and left hippocampal sclerosis. Across evaluations, our patient's performance was highly variable, ranging from below age expectation to within age-expected range. The patient exhibited relative cognitive strengths at both time points on verbal-expressive tasks. Weaknesses were seen in her attention, executive function, psychomotor processing speed, fine motor, visual-motor integration, and social skills. Memory findings were consistent those associated with left hippocampal sclerosis. Evaluations resulted in diagnoses including attention deficit hyperactivity disorder and autism spectrum disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126767 | PMC |
http://dx.doi.org/10.1016/j.ebr.2022.100550 | DOI Listing |
J Exerc Sci Fit
January 2025
Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China.
Background: Basketball is an attractive sport required both cooperative and antagonistic motor skills. However, the neural mechanism of basketball proficiency remains unclear. This study aimed to examine the brain functional and structural substrates underlying varying levels of basketball capacity.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
December 2024
Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China. Electronic address:
Backgrounds: Aberrant brain structures in schizophrenia have been widely explored. However, the causal effects of negative symptoms on brain structural alterations are still unclear. This study aims to explore the synchronous and progressive alterations in gray matter volume (GMV) associated with negative symptoms.
View Article and Find Full Text PDFEpilepsia
December 2024
Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
Objective: Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal mortality, resulting in brain injury and persistent seizures that can last into the late neonatal period and beyond. Effective treatments and interventions for infants affected by hypoxia-ischemia remain lacking. Clinical investigations have indicated an elevation of nuclear factor of activated T cells 5 (NFAT5) in whole blood from umbilical cords of severely affected HIBD infants with epilepsy.
View Article and Find Full Text PDFJ Epilepsy Res
December 2024
Department of Neurology, Seoul National University College of Medicine, Seoul, Korea.
Background And Purpose: The magnetic resonance images (MRIs) ability of lesion detection in epilepsy is crucial for a diagnosis and surgical outcome. Using automated artificial intelligence (AI)-based tools for measuring cortical thickness and brain volume originally developed for dementia, we aimed to identify whether it could lateralize epilepsy with normal MRIs.
Methods: Non-lesional 3-Tesla MRIs of 428 patients diagnosed with focal epilepsy, based on semiology and electroencephalography findings, were analyzed.
Neurology
January 2025
Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland.
Background And Objectives: Mesial temporal lobe epilepsy (mTLE) is generally associated with focal brain atrophy, but little knowledge exists on possible disease-related hypertrophy of brain structures. We hypothesized that repeated seizures or adaptive plasticity may lead to focal brain hypertrophy and aimed to investigate associated clinical correlates.
Methods: In this cohort study, we included patients with mTLE undergoing detailed epilepsy evaluations and matched healthy volunteers (HVs) from 2 tertiary centers (discovery and validation cohorts).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!