Novel Phenotype in Unbalanced 7;9 Translocation with Critical Incidental Finding.

Case Rep Genet

Division of Medical Genetics, Department of Pediatrics, Brooke Army Medical Center, Fort Sam Houston, TX, USA.

Published: May 2022

This case discusses a now 13-year-old boy who underwent chromosome analysis and fluorescence in situ hybridization (FISH) for subtelomeric rearrangements due to dysmorphic features at birth. This testing revealed a diagnosis of an unbalanced 7;9 translocation resulting in monosomy for 7q34-qter and trisomy for 9pter-p21, which resulted in a very complex medical course. At the age of 12, due to persistent complex neurodevelopmental concerns, the patient was referred by neurology for whole-exome sequencing. This testing revealed an incidental pathogenic heterozygous deletion, which is associated with long QT-syndrome type II. Prior to this point, the patient had no symptoms of long QT syndrome and had multiple EKGs with normal QT intervals. However, due to this association, the patient underwent Holter monitoring, which revealed clinical evidence of long-QT syndrome type II. Preventative treatment was then initiated and the patient remains asymptomatic. This case expands on the phenotype of this patient's unbalanced 7;9 translocation as well as highlights the importance of secondary findings in genetic testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130017PMC
http://dx.doi.org/10.1155/2022/7510079DOI Listing

Publication Analysis

Top Keywords

unbalanced translocation
12
testing revealed
8
novel phenotype
4
phenotype unbalanced
4
translocation critical
4
critical incidental
4
incidental finding
4
finding case
4
case discusses
4
discusses 13-year-old
4

Similar Publications

Kinase translocation reporters (KTRs) are powerful tools for single-cell measurement of time-integrated kinase activity but suffer from restricted dynamic range and limited sensitivity, particularly in neurons. To address these limitations, we developed enhanced KTRs (eKTRs) for protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) by (i) increasing KTR size, which reduces the confounding effect of KTR diffusion through the nuclear pore, and (ii) modulating the strength of the bipartite nuclear localization signal (bNLS) in their kinase sensor domains, to ensures that the relative distribution of the KTR between the nucleus and cytoplasmic is determined by active nuclear import, active nuclear export, and relative activity of their cognate kinase. The resultant sets of ePKA-KTRs and eERK-KTRs display high sensitivity, broad dynamic range, and cell type-specific tuning.

View Article and Find Full Text PDF

Clinical and Cytogenetic Impact of Maternal Balanced Double Translocation: A Familial Case of 15q11.2 Microduplication and Microdeletion Syndromes with Genetic Counselling Implications.

Genes (Basel)

November 2024

Laboratório de Citogenética Clínica, Centro de Genética Médica, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira-Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil.

Background: Balanced chromosomal translocations occur in approximately 0.16 to 0.20% of live births.

View Article and Find Full Text PDF

Background: Structural variation (SV), defined as balanced and unbalanced chromosomal rearrangements >1 kb, is a major contributor to germline and neoplastic disease. Large variants have historically been evaluated by chromosome analysis and now are commonly recognized by chromosomal microarray analysis (CMA). The increasing application of genome sequencing (GS) in the clinic and the relatively high incidence of chromosomal abnormalities in sick newborns and children highlights the need for accurate SV interpretation and reporting.

View Article and Find Full Text PDF

Background: Mate-pair sequencing detects both balanced and unbalanced structural variants (SVs) and simultaneously informs in relation to both genomic location and orientation of SVs for enhanced variant classification and clinical interpretation, while chromosomal microarray analysis (CMA) only reports deletion/duplication. Herein, we evaluated its diagnostic utility in a prospective back-to-back prenatal comparative study with CMA.

Methods: From October 2021 to September 2023, 426 fetuses with ultrasound anomalies were prospectively recruited for mate-pair sequencing and CMA in parallel for prenatal genetic diagnosis.

View Article and Find Full Text PDF
Article Synopsis
  • Partial 17q duplication is a rare chromosome abnormality linked to severe developmental issues, intellectual disabilities, and physical anomalies.
  • A case study presented a 7-year-old boy with several health problems, including developmental delays and malformations, and his aborted older brother also exhibited similar abnormalities.
  • The findings provide insights into the clinical characteristics and fetal implications of 17q25 microduplication related to a maternal genetic translocation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!