Malaria caused by the parasites is a major public health concern in malaria-endemic regions with causing the most severe form of the disease. The use of antimalarial drugs for the management of the disease proves to be one of the best methods to manage the disease. Unfortunately, has developed resistance to almost all the current in-use antimalarial drugs. Parasite development of resistance is primarily caused by both parasite and host genetic factors. The parasite genetic factors involve undergoing mutation in the drug target sites or increasing the drug target gene copy number to prevent the intended action of the antimalarial drugs. The host pharmacogenetic factors which determine how a particular antimalarial drug is metabolized could result in variations of drug plasma concentration and consequently contribute to variable treatment outcomes and the emergence or propagation of resistant parasites. Since both host and parasite genomes play a role in antimalarial drug action, a key question often asked is, "which of the two strongly drives or controls antimalarial drug resistance?" A major finding in our recent study published in the Malaria Journal indicates that the parasite's genetic factors rather than the host are likely to energize resistance to an antimalarial drug. However, others have reported contrary findings suggesting that the host genetic factors are the force behind resistance to antimalarial drugs. To bring clarity to these observations, there is the need for deciphering the major driving force behind antimalarial drug resistance through optimized strategies aimed at alleviating the phenomenon. In this direction, literature was systematically reviewed to establish the role and importance of each of the two factors aforementioned in the etiology of drug-resistant malaria. Using Internet search engines such as Pubmed and Google, we looked for terms likely to give the desired information which we herein present. We then went ahead to leverage the obtained information to discuss the globally avid aim of combating antimalarial drug resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9129956 | PMC |
http://dx.doi.org/10.1155/2022/3492696 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Cancer Biology & Genetics Program, Sloan Kettering Institute, New York, NY 10065.
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.
View Article and Find Full Text PDFJ Cancer Res Ther
December 2024
Department of Medical Ultrasound, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, People's Republic of China.
Introduction: Cancer cachexia (CC) is characterized by weight loss with specifically reduced skeletal muscles and adipose tissues in patients with late-stage cancer. Dihydroartemisinin (DHA), an effective antimalarial derivative of artemisinin, has been demonstrated to have anti-inflammatory and antitumor properties.
Materials And Methods: This study examined the effects of DHA on the Lewis lung carcinoma (LLC)-induced CC mouse model.
Cells
January 2025
Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
Signal-dependent transport into and out of the nucleus mediated by members of the importin (IMP) superfamily is crucial for eukaryotic function, with inhibitors targeting IMPα being of key interest as anti-infectious agents, including against the apicomplexan species and , causative agents of malaria and toxoplasmosis, respectively. We recently showed that the FDA-approved macrocyclic lactone ivermectin, as well as several other different small molecule inhibitors, can specifically bind to and inhibit and IMPα functions, as well as limit parasite growth. Here we focus on the FDA-approved antiparasitic moxidectin, a structural analogue of ivermectin, for its IMPα-targeting and anti-apicomplexan properties for the first time.
View Article and Find Full Text PDFBackground: Antibiomania is the manifestation of manic symptoms secondary to taking an antibiotic, which is a rare side effect. In these cases, the antibiotics most often incriminated are macrolides and quinolones, but to our knowledge, there are no published cases of antibiomania secondary to cotrimoxazole. Furthermore, we also provide an update of pharmacovigilance data concerning antibiomania through a search of the World Health Organization (WHO) database.
View Article and Find Full Text PDFSci Rep
January 2025
West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana.
Gossypol has demonstrated significant antimalarial activity against chloroquine-resistant and susceptible Plasmodium falciparum parasites. However, data on its potency in clinical isolates of P. falciparum remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!