Objective: The long-term clinical practice shows that Zizhu ointment (ZZO) is an empirical formula for the treatment of diabetic ulcers (DUs). In this study, we investigated the underlying mechanism of ZZO in the treatment of DU mice.

Methods: Through streptozotocin induction and high-fat diet, a DU mouse model was established and ZZO was given for treatment. The activation of Notch4 signaling was examined by immunofluorescence staining, RT-PCR, as well as Western blotting. Flow cytometry was performed to detect the counts of F4/80+ cells, M1 and M2 macrophages, as well as the expression of CD11c, CD206, etc. The role of Notch4 in wound healing in diabetic mice was verified by Notch4 inhibitors and agonists.

Results: Accelerated wound healing and decreased expression levels of Notch4 and its target genes and ligands were observed in diabetic mice treated with ZZO. ZZO promoted M2 macrophage polarization, downregulated the expression of proinflammatory factors, and upregulated the levels of anti-inflammatory factors. The same tendency was observed in diabetic mice after treatment with Notch4 inhibitors. Knockout of Notch4 accelerated the wound healing rate as well.

Conclusions: ZZO accelerates wound healing of diabetic mice through inhibiting the activation of Notch4 signaling, promoting M2 macrophage polarization, and alleviating inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9129934PMC
http://dx.doi.org/10.1155/2022/5173836DOI Listing

Publication Analysis

Top Keywords

wound healing
16
diabetic mice
16
macrophage polarization
12
notch4 signaling
12
zizhu ointment
8
diabetic ulcers
8
promoting macrophage
8
notch4
8
zzo treatment
8
activation notch4
8

Similar Publications

A microenvironment-adaptive GelMA-ODex@RRHD hydrogel for responsive release of HS in promoted chronic diabetic wound repair.

Regen Biomater

November 2024

Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.

Chronic diabetic wounds present significant treatment challenges due to their complex microenvironment, often leading to suboptimal healing outcomes. Hydrogen sulfide (HS), a crucial gaseous signaling molecule, has shown great potential in modulating inflammation, oxidative stress and extracellular matrix remodeling, which are essential for effective wound healing. However, conventional HS delivery systems lack the adaptability required to meet the dynamic demands of different healing stages, thereby limiting their therapeutic efficacy.

View Article and Find Full Text PDF

Conductive hydrogels: intelligent dressings for monitoring and healing chronic wounds.

Regen Biomater

November 2024

Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China.

Conductive hydrogels (CHs) represent a burgeoning class of intelligent wound dressings, providing innovative strategies for chronic wound repair and monitoring. Notably, CHs excel in promoting cell migration and proliferation, exhibit powerful antibacterial and anti-inflammatory properties, and enhance collagen deposition and angiogenesis. These capabilities, combined with real-time monitoring functions, play a pivotal role in accelerating collagen synthesis, angiogenesis and continuous wound surveillance.

View Article and Find Full Text PDF

The mannose receptor (CD206, expressed by the gene ) is a surface marker overexpressed by anti-inflammatory and pro-tumoral macrophages. As such, CD206 macrophages play key roles in the immune response to different pathophysiological conditions and represent a promising diagnostic and therapeutic target. However, methods to specifically target these cells remain challenging.

View Article and Find Full Text PDF

The field of wound healing faces significant challenges, particularly in the treatment of chronic wounds, which often result in prolonged healing times and complications. Recent advancements in 3D printing technology have provided innovative solutions to these challenges, offering tailored and precise approaches to wound care. This review highlights the role of 3D printing in enhancing wound healing, focusing on its application in creating biocompatible scaffolds, custom wound dressings, and drug delivery systems.

View Article and Find Full Text PDF

Background: An all-inside endoscopic flexor hallucis longus (FHL) tendon transfer is indicated for the treatment of chronic, full-thickness Achilles tendon defects. The aim of this procedure is to restore function of the gastrocnemius-soleus complex while avoiding the wound complications associated with open procedures.

Description: This procedure can be performed through 2 endoscopic portals, a posteromedial portal (the working portal) and a posterolateral portal (the visualization portal).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!