Thyroid associated ophthalmopathy (TAO), characterized by T cell infiltration and orbital fibroblast activation, is an organ-specific autoimmune disease which is still short of effective and safety therapeutic drugs. The PD-1/PD-L1 pathway has been reported hindering the progression of Graves' disease to some extent by inhibiting T cell activity, and tumor therapy with a PD-1 inhibitor caused some adverse effects similar to the symptoms of TAO. These findings suggest that the PD-1/PD-L1 pathway may be associated with the pathogenesis of TAO. However, it remains unknown whether the PD-1/PD-L1 pathway is involved in orbital fibroblast activation. Here, we show that orbital fibroblasts from patients with TAO do not express PD-L1. Based on OF-T cell co-culture system, exogenous PD-L1 weakens T cell-induced orbital fibroblast activation by inhibiting T cell activity, resulting in reduced production of sICAM-1, IL-6, IL-8, and hyaluronan. Additionally, exogenous PD-L1 treatment also inhibits the expression of CD40 and the phosphorylation levels of MAPK and NF-κB pathways in orbital fibroblasts of the OF-T cell co-culture system. Knocking down CD40 with CD40 siRNA or down-regulating the phosphorylation levels of MAPK and NF-κB pathways with SB203580, PD98059, SP600125, and PDTC can both reduce the expression of these cytokines and hyaluronan. Our study demonstrates that the orbital immune tolerance deficiency caused by the lack of PD-L1 in orbital fibroblasts may be one of the causes for the active orbital inflammation in TAO patients, and the utilization of exogenous PD-L1 to reconstruct the orbital immune tolerance microenvironment may be a potential treatment strategy for TAO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9128409 | PMC |
http://dx.doi.org/10.3389/fimmu.2022.849480 | DOI Listing |
Endocrinology
January 2025
Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
The pathogenesis of Thyroid Eye Disease (TED) has been suggested as due to signal enhancement in orbital fibroblasts as a result of autoantibody-induced, synergistic, interaction between the TSH receptor (TSHR) and the IGF-1 receptor (IGF-1R). This interaction has been explained by a "receptor cross talk", mediated via β-arrestin binding. Here, we have examined if this interaction can be mediated via direct receptor contact using modeling and experimental approaches.
View Article and Find Full Text PDFEur J Neurol
January 2025
Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.
Background And Purpose: Patients with active cancer face an increased risk of ischemic stroke. Also, stroke may be an initial indicator of cancer. In patients with large vessel occlusion (LVO) stroke treated with thrombectomy, analysis of the clot composition may contribute new insights into the pathological connections between these two conditions.
View Article and Find Full Text PDFSci Rep
January 2025
Departments of Ophthalmology, Sapporo Medical University School of Medicine, S-1 W-16, Chuo-Ku, Sapporo, 060-8543, Japan.
To elucidate the role of IGF1R inhibition in the pathogenesis of Graves' orbitopathy (GO), the effects of linsitinib (Lins) on a recombinant human TSHR antibody (M22) and IGF1 to activate TSHR and IGF1R of human orbital fibroblasts (HOFs) obtained from patients without GO (HOFs) and patients with GO (GHOFs) were studied using in vitro three-dimensional (3D) spheroid models in addition to their 2D planar cell culture. For this purpose, we evaluated 1) cellular metabolic functions by using a seahorse bioanalyzer (2D), 2) physical properties including size and stiffness of 3D spheroids, and mRNA expression of several extracellular matrix (ECM) proteins, their modulators (CCL2 LOX, CTGF, MMPs), ACTA2 and inflammatory cytokines (IL1β, IL6). Administration of IGF1 and M22 induced increases of cellular metabolic functions with the effect on HOFs being much more potent than the effect on GHOFs, suggesting that IGF1R and TSHR of GHOFs may already be stimulated.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. Electronic address:
RNA-binding motif 47 (RBM47) is a recently identified RNA-binding protein involved in early vertebrate development, immune homeostasis, and cancer development. This study examined the biological functions of RBM47 in thyroid-associated ophthalmopathy (TAO). Orbital fibroblasts (OFs) were obtained from the control (n = 6) and TAO groups (n = 6).
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2025
Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, Address: Hungary, 4032 Debrecen Nagyerdei krt. 98. Tel. +36-52-255-600.
Context: Increased orbital tissue volume due to matrix expansion, orbital fibroblast (OF) proliferation and adipocyte differentiation are the hallmarks of thyroid eye disease (TED). Their combination with the presence of hyaluronan-bound excess water in the constrains of the bony orbit results in increased intraorbital pressure. High intraorbital pressure, along with changes in the mechanical properties of orbital tissues, may lead to the activation of mechanosensitive receptors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!