Motivated by the various reported potential applications of poly(phosphine oxide) materials, a visible light photoinitiated iodo-ene reaction was successfully employed in network polymerization between the phosphorus-containing multifunctional monomer, tris(allyloxymethyl)phosphine oxide (TAOPO), and diiodoperfluorobutane. The cross-linked poly(phosphine oxide) network exhibited a higher glass transition temperature than a similarly cross-linked polymer formulated with trimethylolpropane triallyl ether (TMPTAE). Interestingly, the TMPTAE/DIPFB cross-linked polymer, changed color from clear to yellow within 10 min of exposure to air, whereas the cross-linked poly(phosphine oxide) underwent a similar change only upon heating. Upon investigation, it was determined that alkenes were generated within the polymer network, presumably via elimination, accounting for the observed color. These double bonds, formed in the polymer matrix, permitted surface modification via radical thiol-ene reaction. The successful surface functionalization with PEG-SH resulted in increasing the surface wettability. Additionally, the phosphorus-containing network polymer with double bonds in the polymer matrix showed shape memory capability, this representing an exciting and versatile materials platform.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.8b00934DOI Listing

Publication Analysis

Top Keywords

polyphosphine oxide
12
surface wettability
8
cross-linked polyphosphine
8
cross-linked polymer
8
double bonds
8
polymer matrix
8
polymer
6
phosphate-based cross-linked
4
cross-linked polymers
4
polymers iodo-ene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!