Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We utilize atomistic molecular dynamics (MD) simulations to study local structural changes inside a polyelectrolyte complex consisting of poly(styrenesulfonate) (PSS) and poly(diallyldimethylammonium) (PDADMA) upon densification, in analogy to ultracentrifugation in experiments. In particular, we focus on the water content and on the reinforcement of the PSS-PDADMA network for various external accelerations. We demonstrate that apart from the formation of mesoscopic pores observed experimentally also the microscopic structure and the local relaxation processes likely affect the unique rheological properties of compacted polyelectrolyte complexes, as densification increases both the number of PSS-PDADMA coordinations and the intermixing of PSS and PDADMA. These processes slow down local rearrangements, thus further stabilizing the compacted state. We find that the concept of binary PSS-PDADMA salt bonds-relevant for theoretical models-is not strictly valid in the dense limit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.8b00630 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!