Guanidinium is one of nature's strongest denaturants and is also a motif that appears in several interfacial contexts such as the RGD sequence involved in cell adhesion, cell penetrating peptides, and antimicrobial molecules. It is important to quantify the origin of guanidinium's ion-specific interactions so that its unique behavior may be exploited in synthetic applications. The present work demonstrates that guanidinium ions can both break and form strongly associating ion complexes in a context-dependent way. These insights into guanidinium's behavior are elucidated using polyelectrolyte complexes (PECs), where interpolymer ion pairs between oppositely charged polymers play an important role in determining material stability. Different polycation-polyanion combinations can span a large range of association affinities, where more strongly associating complexes can remain insoluble in concentrated salt solutions and in extreme pH conditions. This high stability is desirable in several application contexts for PECs, but also renders them challenging to process and, therefore, to study since they cannot be dissolved into polymer solutions. Here we demonstrate that guanidinium salts are very effective in dissolving the poly(styrenesulfonate)/poly(allylamine) (PSS:PAH) complex, which has one of the highest reported polycation-polyanion association affinities. We also demonstrate the importance of charge identity in complexation phenomena by functionalizing guanidinium directly into poly(allylamine), resulting in a complex that remains stable under highly denaturing conditions. The model system of PSS:PAH is used to glean insights into guanidinium's denaturing activity, as well as to broadly comment on the nature of ion-specific interactions in charged macromolecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.8b00824 | DOI Listing |
Langmuir
January 2025
Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India.
Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry, National University of Singapore, Singapore, Singapore.
Topological design of π electrons in zigzag-edged graphene nanoribbons (ZGNRs) leads to a wealth of magnetic quantum phenomena and exotic quantum phases. Symmetric ZGNRs typically show antiferromagnetically coupled spin-ordered edge states. Eliminating cross-edge magnetic coupling in ZGNRs not only enables the realization of a class of ferromagnetic quantum spin chains, enabling the exploration of quantum spin physics and entanglement of multiple qubits in the one-dimensional limit, but also establishes a long-sought-after carbon-based ferromagnetic transport channel, pivotal for ultimate scaling of GNR-based quantum electronics.
View Article and Find Full Text PDFCureus
December 2024
Anesthesia and Intensive Care Unit, Giuseppe Mazzini Hospital, Teramo, ITA.
The management of postoperative pain in pediatric patients undergoing emergency surgical procedures, particularly in non-pediatric hospitals, presents significant challenges due to the unique physiological requirements of children. The utilization of opioid analgesia may result in severe complications, necessitating a transition toward multimodal analgesia, which integrates various pain management strategies to enhance effectiveness while mitigating adverse effects. Locoregional anesthesia techniques, such as fascial plane blocks, provide targeted pain alleviation, reducing dependence on opioids.
View Article and Find Full Text PDFChemistry
January 2025
Fujian Normal University, School of Chemistry and Materials, No.8 Shangsan Road, ., Fuzhou City, CHINA.
The advancement of high-value CH4 purification technology within the natural gas industry is paramount for industrial processes. Herein, we constructed ZJNU-402, a new porous material characterized by permanent porosity, as an effective adsorbent for separating C3H8/CH4 and C2H6/CH4 mixtures. The findings reveal an outstanding C3H8 adsorption capacity of 68 cm3 g-1 and a moderate C2H6 adsorption rate of 42 cm3 g-1, with a notably lower CH4 adsorption rate of 11 cm3 g-1.
View Article and Find Full Text PDFPublic Health Nutr
January 2025
Department of Health Sciences, University of York, York, YO10 5DD, UK.
Objective: Free school meals (FSM) are a crucial form of support for families. This study aimed to investigate whether the FSM allowance can provide what is perceived to be, healthy, sustainable, and satisfying food.
Design: A mixed methods study incorporating co-production, citizen science and participatory approaches was conducted.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!