This Viewpoint highlights the viability and increasing variety of functionalized polypentenamers as unique and valuable materials created through enthalpy-driven ring-opening metathesis polymerization (ROMP) of low ring strain cyclopentene monomers. The terms "low ring strain" and "enthalpy-driven" are typically conflicting ideologies for successful ROMP; however, these monomers possess a heightened sensitivity to reaction conditions, which may be leveraged in a number of ways to provide performance elastomers with good yield and precise functional topologies. Over the last several years, a rekindled interest in these systems has led to a renaissance of research aimed at improving their synthesis and exploring their potential. Their chemistry, applications, and future outlook are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.8b00885 | DOI Listing |
ACS Macro Lett
January 2019
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States.
This Viewpoint highlights the viability and increasing variety of functionalized polypentenamers as unique and valuable materials created through enthalpy-driven ring-opening metathesis polymerization (ROMP) of low ring strain cyclopentene monomers. The terms "low ring strain" and "enthalpy-driven" are typically conflicting ideologies for successful ROMP; however, these monomers possess a heightened sensitivity to reaction conditions, which may be leveraged in a number of ways to provide performance elastomers with good yield and precise functional topologies. Over the last several years, a rekindled interest in these systems has led to a renaissance of research aimed at improving their synthesis and exploring their potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!