Lyotropic liquid crystalline (LC) phases offer a means of controlling molecular order and orientation in thin films of conjugated polymers. Surface energy, surface-induced ordering, and film thickness are additional factors determining the molecular order in thin films. Through solvent vapor annealing and atomic force microscopy in the swollen state, we show that in ultrathin films of a poly(dithiazolyldiketopyrrolopyrrole-tetrafluorobenzene) (PTzDPPTzF4) alternating copolymer stacks of monomolecular-thick layers with a 2.1 nm step height form, which resemble a lyotropic smectic LC phase. Within the smectic layers, the polymer backbones are aligned parallel to the film plane, with edge-on oriented diketopyrrolopyrrole (DPP) cores. Thicker films resemble a semicrystalline morphology with lamellae consisting of blocks. Such lamellae are typical for polymers crystallizing via Strobl's block-forming model. Our findings indicate that molecular order, molecular orientation, and the morphology of PTzDPPTzF4 copolymer films are tunable by LC order and by varying the film thickness according to the desired application of the particular organic electronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.9b00722DOI Listing

Publication Analysis

Top Keywords

film thickness
12
molecular order
12
semicrystalline morphology
8
thin films
8
films
5
liquid-crystalline order
4
film
4
order film
4
thickness determine
4
determine semicrystalline
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!