A critical challenge in the application of functional cellulose fibrils is to perform efficient surface modification without disrupting the original properties. Three-component Passerini reaction (Passerini 3-CR) is regarded as an effective functionalization approach which can be carried out under mild and fast reaction condition. In this study, we investigated the application of Passerini 3-CR for the synthesis of thermoresponsive cellulose fibrils by covalently tethering poly(-isopropylacrylamide) in aqueous condition at ambient temperature. The three components, a TEMPO-oxidized cellulose nanofiber bearing carboxylic acid moieties (TOCN-COOH), a functionalized polymer with aldehyde group (pNIPAm-COH) and a cyclohexyl isocyanide, were reacted in one pot resulting in 36% of grafting efficiency within 30 min. The chemical coupling was evidenced by improved aqueous dispersibility, which was further confirmed by FT-IR, TGA, UV-vis, and turbidity study. It was observed that the grafting efficiency is strongly dependent on the chain length of the polymer. Furthermore, AFM and X-ray diffraction measurements affirmed the suitability of the proposed method for chemical modification of cellulose nanofibers without significantly compromising the original morphology and structural integrity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.8b00051 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!