Taming the Devil: Antimicrobial Peptides for Safer TB Therapeutics.

Curr Protein Pept Sci

Institute of Nano Science and Technology (INST), Habitat Centre, Phase-10, Sector-64, Mohali, Punjab-160062, India.

Published: December 2022

Tuberculosis (TB) is a highly contagious infection with extensive mortality and morbidity. The rise of TB-superbugs (drug-resistant strains) with the increase of their resistance to conventional antibiotics has prompted a further search for new anti-mycobacterial agents. It is difficult to breach the barriers around TB bacteria, including mycolic cell wall, granuloma, biofilm and mucus, by conventional antibiotics in a short span of time. Hence, there is an essential need for molecules with an unconventional mode of action and structure that can efficiently break the barriers around mycobacterium. Antimicrobial peptides (AMP) are essential components of innate immunity having cationic and amphipathic characteristics. Lines of evidence show that AMPs have good myco-bactericidal and antibiofilm activity against normal as well as antibiotic-resistant TB bacteria. These peptides have shown direct killing of bacteria by membrane lysis and indirect killing by activation of innate immune response in host cells by interacting with the component of the bacterial membrane and intracellular targets through diverse mechanisms. Despite a good anti-mycobacterial activity, some undesirable characteristics are also associated with AMP, including hemolysis, cytotoxicity, susceptibility to proteolysis and poor pharmacokinetic profile, and hence only a few clinical studies have been conducted with these biomolecules. The design of new combinatorial therapies, including AMPs and particulate drug delivery systems, could be new potential alternatives to conventional antibiotics to fight MDR- and XDRTB. This review outlined the array of AMP roles in TB therapy, possible mechanisms of actions, activities, and current advances in pragmatic strategies to improve challenges accompanying the delivery of AMP for tuberculosis therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389203723666220526161109DOI Listing

Publication Analysis

Top Keywords

conventional antibiotics
12
antimicrobial peptides
8
taming devil
4
devil antimicrobial
4
peptides safer
4
safer therapeutics
4
therapeutics tuberculosis
4
tuberculosis highly
4
highly contagious
4
contagious infection
4

Similar Publications

Unlabelled: . resistant to fluoroquinolones and macrolides are serious public health threats. Studies aiming to identify risk factors for drug-resistant have narrowly focused on antimicrobial use at the farm level.

View Article and Find Full Text PDF

Understanding microbial-host interactions in the oral cavity is essential for elucidating oral disease pathogenesis and its systemic implications. bacteria-host cell coculture models have enabled fundamental studies to characterize bacterial infection and host responses in a reductionist yet reproducible manner. However, existing coculture models fail to replicate the physiological oxygen gradients critical for studying these interactions.

View Article and Find Full Text PDF

Click chemistry-enabled gold nanorods for sensitive detection and viability evaluation of copper(II)-reducing bacteria.

Mater Today Bio

February 2025

Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China.

The rise of antibiotic resistance poses a significant and ongoing challenge to public health, with pathogenic bacteria remaining a persistent threat. Traditional culture methods, while considered the gold standard for bacterial detection and viability assessment, are time-consuming and labor-intensive. To address this limitation, we developed a novel point-of-care (POC) detection method leveraging citrate- and alkyne-modified gold nanorods (AuNRs) synthesized with click chemistry properties.

View Article and Find Full Text PDF

The presence of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system in the superbug presents a unique opportunity to precisely target and edit bacterial genomes to modify their drug resistance. The objective was to detect the prevalence of CRISPR in extensively and pan-drug-resistant and to determine the utility of whole-genome sequencing (WGS) for the analysis of the entire genome for such strains. The antimicrobial susceptibilities of one hundred isolates were assessed using the antibiotic susceptibility test (AST) card of the VITEK system.

View Article and Find Full Text PDF

Bacterial biofilms exhibit remarkable resistance against conventional antibiotics and are capable of evading the humoral immune response. They account for nearly 80% of chronic infections in humans. Development of bacterial biofilms on medical implants results in their malfunctioning and subsequently leads to high mortality rates worldwide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!