Purpose: To evaluate the additive effect of Transcranial Direct Current Stimulation (tDCS) associated with multi-component training (MT) on the functional capacity (FC) of older adults and to assess whether these effects remain after the end of training. The secondary objectives were to evaluate the locomotion capacity, balance, functional independence, and quality of life and correlate them with functional capacity.
Methodology: Twenty-eight older adults were randomized into two groups: experimental (MT associated with active tDCS - a-tDCS) and control (MT associated with sham tDCS - s-tDCS). The FC was measured by the Glittre-ADL test, locomotion capacity by the 6-minute walk test, balance by the BESTest, functional independence by the FIM, and quality of life by the WHQOL. The assessments were performed pre-, post-intervention, and 30-day follow-up.
Results: There was a significant decrease in the time to the Glittre-ADL test when comparing the a-tDCS and s-tDCS groups after the interventions (139.77 ± 21.62, 205.10 ± 43.02, p < .001) and at the 30-day follow-up (142.74 ± 17.12, 219.55 ± 54.05, p < .001), respectively. There was a moderate correlation between FC and locomotion capacity and balance.
Conclusions: The addition of tDCS potentiated the results of MT to impact FC, maintaining the positive results longer. Locomotion and balance influenced the improvement of functional capacity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593985.2022.2081638 | DOI Listing |
J Neural Eng
January 2025
Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213-3815, UNITED STATES.
Objective: Transcranial electrical stimulation (TES) is an effective technique to modulate brain activity and treat diseases. However, TES is primarily used to stimulate superficial brain regions and is unable to reach deeper targets. The spread of injected currents in the head is affected by volume conduction and the additional spreading of currents as they move through head layers with different conductivities, as is discussed in [1].
View Article and Find Full Text PDFMed J Malaysia
January 2025
Universiti Malaysia Sarawak, Faculty of Medicine and Health Sciences, Kota Samarahan, Sarawak, Malaysia.
Transcranial direct current stimulation (tDCS) has emerged as a potential adjunct therapy for post-stroke motor rehabilitation. While conventional rehabilitation methods remain the primary approach to improving motor function after stroke, many patients experience incomplete recovery, necessitating the exploration of additional interventions. This commentary article examines the role of tDCS in poststroke motor recovery, focusing on its mechanisms, efficacy, and limitations.
View Article and Find Full Text PDFInt J Exerc Sci
December 2024
Laboratory for Brain Recovery and Function, Dalhousie University, Halifax, NS, CAN.
Aerobic exercise has been shown to impact corticospinal excitability (CSE), however the mechanism(s) by which this occurs is unclear. Some evidence suggests an increase in blood lactate concentration resulting from exercise may be what is driving these changes in corticospinal excitability. The extent of literature examining this effect and whether it is consistent across the literature is unknown.
View Article and Find Full Text PDFMult Scler Relat Disord
December 2024
IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy. Electronic address:
Background: Multiple sclerosis (MS) is a demyelinating disease characterized by balance and gait impairment, fatigue, anxiety, depression, and diminished quality of life. Transcranial direct current stimulation (tDCS) has emerged as an effective intervention for managing these symptoms.
Objective: This study aims to investigate the efficacy of remotely supervised tDCS (RS-tDCS) applied to the left dorsolateral prefrontal cortex, in conjunction with a telerehabilitation (TR) program, on motor (balance and gait), cognitive (executive functions), and participation outcomes (fatigue, anxiety, depression, and quality of life) in persons with MS (pwMS).
Clin Neurol Neurosurg
January 2025
Department of Neurocience and Mental Health, Botucatu Medical School (UNESP), Botucatu, São Paulo, Brazil.
Introduction: Our primary clinical trial indicated that anodal stimulation of the right posterior parietal region associated with specific and perceptual task training was superior to placebo in reducing stroke-induced hemispatial neglect (HN) immediately after the treatment protocol. However, our primary study did not investigate whether this benefit was maintained in the long term after stroke. Therefore, this study aimed to evaluate the long-term effects of the protocol applied in the ELETRON trial on outcomes associated with HN, functionality, and mortality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!