Background: Insulin resistance plays an important role in predicting type 2 diabetes that may develops. This study was planned in order to investigate the beneficial effects of quinoa (Chenopodium quinoa) use in glucocorticoid induced-insulin resistance.

Methods And Results: Forty-two rats were used as the material (experimental) groups: the control group (C), the quinoa-administered group (Q), the insulin resistance-created group (IR), the IR + metformin group (IM), the IR + quinoa for treatment group (IQ) and the quinoa + IR for prophylaxis group (QI). Blood glucose, insulin levels and HOMA-IR were found to be highest (p < 0.05) in the IR group (p < 0.05). Glucose levels decreased significantly with the administration of quinoa and approached the levels of the control, but the insulin levels and the HOMA-IR did not significantly change. It was also observed that other biochemical parameters (ALT, AST, ALP, total cholesterol, total protein, urea and creatinine) changed significantly in the IR group and approached the levels of the control group with the administration of quinoa. Apoptotic (BCL2 5, BAX 9, CAS 3), autophagic (SQSTM1 7, ATG5) and inflammation (IL-1β, TNF-α) genes were upregulated by 5-11-fold in the IR group. In the groups in which quinoa was administered for treatment and protection, all these genes were found to be upregulated to a lower extent than the IR group. Antioxidant genes (GPX1, SOD1) increased by nine to tenfold in the quinoa groups.

Conclusion: As a result, after administration of quinoa, it was determined that the glucose level increased due to experimental insulin resistance and the liver and kidney damage indicators decreased. It was determined that quinoa (Chenopodium quinoa) had significant beneficial effects on biochemical parameters and apoptotic, autophagic, antioxidant and inflammatory markers in experimental glucocorticoid-induced insulin resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-022-07479-xDOI Listing

Publication Analysis

Top Keywords

quinoa chenopodium
8
chenopodium quinoa
8
insulin resistance
8
group
6
quinoa
4
quinoa apoptotic
4
apoptotic autophagic
4
autophagic antioxidant
4
antioxidant inflammation
4
inflammation markers
4

Similar Publications

Screening of Plant UDP-Glycosyltransferases for Betanin Production in Yeast.

Appl Biochem Biotechnol

January 2025

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark.

To cover the rising demand for natural food dyes, new sources and production methods are needed. Microbial fermentation of nature-identical colours, such as the red pigment betanin, has the potential to be a cost-efficient alternative to plant extraction. The last step of betanin production is catalysed by a UDP-glycosyltransferase (UGT).

View Article and Find Full Text PDF

Carboxylated nanocellulose from quinoa husk for enhanced protease immobilization and stability of protease in biotechnological applications.

Sci Rep

January 2025

Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), P. O. Box: 31535-1897, Karaj, Iran.

Herein, an efficient and feasible approach was developed to oxidize low-cost agricultural waste (quinoa husk, QS) for the synthesis of carboxylated nanocellulose (CNC). The as-prepared rod-like CNCs (average diameter of 10 nm and length of 103 nm) with a high specific surface area (173 m/g) were utilized for the immobilization of a model protease enzyme (PersiProtease1) either physically or via covalent attachment. For chemical immobilization, CNCs were firstly functionalized with N, N'-dicyclohexylcarbodiimide (DCC) to provide DCNCs nanocarrier which could covalently bond to enzyme trough nucleophilic substitution reaction and formation of the amide bond between DCNCs and enzyme.

View Article and Find Full Text PDF

Corrigendum: Root symbiotic fungi improve nitrogen transfer and morpho-physiological performance in .

Front Plant Sci

December 2024

Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.

[This corrects the article DOI: 10.3389/fpls.2024.

View Article and Find Full Text PDF

Beverages developed from pseudocereals (quinoa, buckwheat, and amaranth): Nutritional and functional properties.

Compr Rev Food Sci Food Saf

January 2025

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.

The rising global demand for nutritious, sustainable, and plant-based beverages has catalyzed interest in pseudocereal-based products, offering an innovative alternative to traditional cereals. Pseudocereals such as quinoa, buckwheat, and amaranth are valued for their exceptional nutritional profiles, including high-quality proteins, dietary fibers, and bioactive compounds. This review explores the development of pseudocereal-based beverages, emphasizing their potential as milk alternatives, fermented drinks, and beer products.

View Article and Find Full Text PDF

Gut microbiota dysbiosis significantly contributes either to metabolic or immune diseases. Modulating the gut microbiome is the subject of intense research, but how immunonutritional ingredients from Chenopodium quinoa contribute to shaping the commensal microbiome and its metabolic capacities has not been determined. Sixty healthy volunteers participated in a double-blind, randomized parallel pilot study with two study arms: high fat-containing cookie and a C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!