Cellulose, the most abundant biopolymer on Earth, has been widely attracted owing to availability, intoxicity, and biodegradability. Environmentally friendly hydrogels were successfully prepared from water hyacinth-extracted cellulose using a dissolution approach with sodium hydroxide and urea, and sodium tetraborate decahydrate (borax) was used to generate cross-linking between hydroxyl groups of cellulose chains. The incorporation of borax could provide the superabsorbent feature into the cellulose hydrogels. The uncross-linked cellulose hydrogels had a swelling ratio of 325%, while the swelling ratio of the cross-linked hydrogels could achieve ~ 900%. With increasing borax concentrations, gel fraction of the cross-linked hydrogels increased considerably. Borax also formed char on cellulose surfaces and generated water with direct contact with flame, resulting in flame ignition and propagation delay. Moreover, the cross-linked cellulose-based hydrogels showed antibacterial activity for gram-positive bacteria (S. aureus). The superabsorbent cross-linked cellulose-based hydrogels prepared in this work could possibly be used for wound dressing, agricultural, and flame retardant coating applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134984 | PMC |
http://dx.doi.org/10.1038/s41598-022-12688-2 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China; School of Health and Hygiene, Guangzhou Huaxia Vocational College, China. Electronic address:
J Biomater Appl
December 2024
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Heilongjiang, People's Republic of China.
Int J Biol Macromol
January 2025
Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin North Road, Nanjing 210042, China.
Cellulose based aerogels have recently gained a lot of interest in the past few years because of their sustainability, biocompatibility, biodegradability, and biosafety. Cellulose is an excellent raw material for the preparation of aerogels because of its advantages of strong renewability, low cost, good biocompatibility and easy degradation. The nanoscale cellulose can be prepared by physical, chemical and biological enzyme methods for the preparation of nanocellulose based aerogels (NCBAs).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China. Electronic address:
Hydrogel-born materials have garnered significant interest due to their inherent flame retardant properties and eco-friendly characteristics. In light of the diminishing petroleum reserves and the escalating environmental challenges, there is an urgent impetus to exploit high-value applications of naturally occurring resources and to advance research in sustainable manufacturing technologies. In this vein, we describe an innovative and sustainable methodology for the development and production of flame-retardant hydrogels.
View Article and Find Full Text PDFCarbohydr Polym
January 2025
Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy- Spanish National Research Council (SusPlast-CSIC), Madrid, Spain. Electronic address:
This study presents a circular economy approach utilizing hemp stems and rice straw, typically perceived as low-value agricultural waste, to develop a sustainable alternative to traditional plastic absorbent pads for food packaging. The development of an active material was achieved through the utilization of hemp cellulose and a bioactive extract isolated from rice straw. In addition to reducing plastic pollution, this material demonstrates the potential to enhance food preservation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!