A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of the recent winter Arctic sea ice loss in short-term simulations of a regional atmospheric model. | LitMetric

Notable changes in the wintertime Arctic atmospheric circulation have occurred over the last few decades. Despite its importance in understanding the recent changes in the Northern Hemisphere midlatitude climate, it remains unclear whether and how these changes are affected by recent Arctic sea ice loss. In this study, a regional scale model is used to separate the direct sea ice influence from the natural variability of large-scale atmospheric circulation. Results show that, in response to sea ice loss, the increase of geopotential height in the mid-to-upper troposphere is robust across the simulations, but the magnitude of the response is highly dependent on the background state of the atmosphere. In most cases the sea ice loss-induced atmospheric warming is trapped near the surface due to the high vertical stability of winter Arctic lower troposphere, accordingly, resulting in a small response of geopotential height. However, when a low-pressure system is located over the Barents Sea, the relatively weak stability allows an upward transport of the surface warming, causing a significantly larger geopotential height increase. This strong state-dependence of atmospheric response which is also found in recent studies using global-scale model experiments, highlights the importance of accurately representing the atmospheric background state for numerical model assessments of sea ice influence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135704PMC
http://dx.doi.org/10.1038/s41598-022-12783-4DOI Listing

Publication Analysis

Top Keywords

sea ice
24
ice loss
12
geopotential height
12
winter arctic
8
arctic sea
8
atmospheric circulation
8
ice influence
8
background state
8
sea
7
ice
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!