PROTAC mediated FKBP12 degradation enhances Hepcidin expression via BMP signaling without immunosuppression activity.

Signal Transduct Target Ther

MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China.

Published: May 2022

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135734PMC
http://dx.doi.org/10.1038/s41392-022-00970-8DOI Listing

Publication Analysis

Top Keywords

protac mediated
4
mediated fkbp12
4
fkbp12 degradation
4
degradation enhances
4
enhances hepcidin
4
hepcidin expression
4
expression bmp
4
bmp signaling
4
signaling immunosuppression
4
immunosuppression activity
4

Similar Publications

Proteolysis-Targeting Chimeras (PROTAC) are a bifunctional molecule that binds to a protein of interest (POI) and a ubiquitin ligase, thereby inducing the ubiquitination and degradation of POI. Many PROTACs currently utilize a limited number of ubiquitin ligases, such as von Hippel-Lindau (VHL) and Cereblon. Because these ubiquitin ligases are widely expressed in normal tissues, unexpected side effects can occur.

View Article and Find Full Text PDF

Nowadays, chemotherapy and immunotherapy remain the major treatment strategies for Triple-Negative Breast Cancer (TNBC). Identifying biomarkers to pre-select and subclassify TNBC patients with distinct chemotherapy responses is essential. In the current study, we performed an unbiased Reverse Phase Protein Array (RPPA) on TNBC cells treated with chemotherapy compounds and found a leading significant increase of phosphor-AURKA/B/C, AURKA, AURKB, and PLK1, which fall into the mitotic kinase group.

View Article and Find Full Text PDF

Background: Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that utilize the ubiquitin-proteasome system to selectively degrade target proteins. This innovative technology has shown remarkable efficacy and specificity in degrading oncogenic proteins and has progressed through various stages of preclinical and clinical development for hematologic malignancies, including adult acute myeloid leukemia (AML). However, the application of PROTACs in pediatric AML remains largely unexplored.

View Article and Find Full Text PDF

TRAF2 and RIPK1 redundantly mediate classical NFκB signaling by TNFR1 and CD95-type death receptors.

Cell Death Dis

January 2025

Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auvera Haus Grombühlstraße 12, 97080, Würzburg, Germany.

This study suggests a modified model of TNFR1-induced complex I-mediated NFκB signaling. Evaluation of a panel of five tumor cell lines (HCT116-PIK3CAmut, SK-MEL-23, HeLa-RIPK3, HT29, D10) with TRAF2 knockout revealed in two cell lines (HT29, HeLa-RIPK3) a sensitizing effect for death receptor-induced necroptosis and in one cell line (D10) a mild sensitization for TNFR1-induced apoptosis. TRAF2 deficiency inhibited death receptor-induced classical NFκB-mediated production of IL-8 only in a subset of cell lines and only partly.

View Article and Find Full Text PDF

Targeted protein degraders, in the form of proteolysis targeting chimaeras (PROTACs) and molecular glues, leverage the ubiquitin-proteasome system to catalytically degrade specific target proteins of interest. Because such molecules can be extremely potent, they have attracted considerable attention as a therapeutic modality in recent years. However, while targeted degraders have great potential, they are likely to face many of the same challenges as more traditional small molecules when it comes to their development as therapeutics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!