Locomotion in vertebrates is accompanied by retinal image-stabilizing eye movements that derive from sensory-motor transformations and predictive locomotor efference copies. During development, concurrent maturation of locomotor and ocular motor proficiency depends on the structural and neuronal capacity of the motion detection systems, the propulsive elements and the computational capability for signal integration. In developing Xenopus larvae, we demonstrate an interactive plasticity of predictive locomotor efference copies and multi-sensory motion signals to constantly elicit dynamically adequate eye movements during swimming. During ontogeny, the neuronal integration of vestibulo- and spino-ocular reflex components progressively alters as locomotion parameters change. In young larvae, spino-ocular motor coupling attenuates concurrent angular vestibulo-ocular reflexes, while older larvae express eye movements that derive from a combination of the two components. This integrative switch depends on the locomotor pattern generator frequency, represents a stage-independent gating mechanism, and appears during ontogeny when the swim frequency naturally declines with larval age.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135768 | PMC |
http://dx.doi.org/10.1038/s41467-022-30636-6 | DOI Listing |
J Dance Med Sci
January 2025
School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston, UK.
There is currently little research relating specifically to the muscular strength and endurance requirements of the upper body such as lifts at varying heights, ground floor contact with the hands and inversions such as handstands. Enhanced understanding of muscular demands can inform training program design to build physical tolerance to meet the demand of the activity. The aim of this study was to ascertain the frequency of upper body muscular skills in contemporary and ballet dance performance.
View Article and Find Full Text PDFSensors (Basel)
January 2025
University-Industrial Cooperation Corps of HiVE Center, Wonkwang Health Science University, 514, Iksan-daero, Iksan-si 54538, Republic of Korea.
Virtual reality (VR) technology has gained popularity across various fields; however, its use often induces cybersickness, characterized by symptoms such as dizziness, nausea, and eye strain. This study investigated the differences in cybersickness levels and head movement patterns under three distinct VR viewing conditions: dynamic VR (DVR), static VR (SVR), and a control condition (CON) using a simulator. Thirty healthy adults participated, and their head movements were recorded using the Meta Quest 2 VR headset and analyzed using Python.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Civil Engineering and Architecture, University of Catania, 64 Santa Sofia Street, 95123 Catania, Italy.
Eye-tracking technologies are emerging in research aiming to understand the visual behavior of cyclists to improve their safety. These technologies gather real-time information to reveal what the cyclists look at and how they respond at a specific location and time. This systematic review investigates the use of eye-tracking systems to improve cyclist safety.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Philosophy, Philosophy of Science and the Study of Religion, Ludwig Maximilian University of Munich, München, Germany.
Many visualisations used in the climate communication field aim to present the scientific models of climate change to the public. However, relatively little research has been conducted on how such data are visually processed, particularly from a behavioural science perspective. This study examines trends in visual attention to climate change predictions in world maps using mobile eye-tracking while participants engage with the visualisations.
View Article and Find Full Text PDFeNeuro
January 2025
Research Group for Brain and Cognitive Science, Shahid Beheshti Medical University, Tehran, Iran.
Visual information emerging from the extrafoveal locations is important for visual search, saccadic eye movement control, and spatial attention allocation. Our everyday sensory experience with visual object categories varies across different parts of the visual field which may result in location-contingent variations in visual object recognition. We used a body, animal body, and chair two-forced choice object category recognition task to investigate this possibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!