Serine Incorporator 5 (SERINC5), a cellular multipass transmembrane protein that is involved in sphingolipid and phosphatydilserine biogenesis, potently restricts a number of retroviruses, including Human Immunodeficiency Virus (HIV). SERINC5 is incorporated in the budding virions leading to the inhibition of virus infectivity. In turn, retroviruses, including HIV, encode factors that counteract the antiviral effect of SERINC5. While SERINC5 has been well studied in retroviruses, little is known about its role in other viral families. Due to the paucity of information regarding host factors targeting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), we evaluated the effect of SERINC proteins on SARS-CoV-2 infection. Here, we show SERINC5 inhibits SARS-CoV-2 entry by blocking virus-cell fusion, and SARS-CoV-2 ORF7a counteracts the antiviral effect of SERINC5 by blocking the incorporation of over expressed SERINC5 in budding virions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135752 | PMC |
http://dx.doi.org/10.1038/s41467-022-30609-9 | DOI Listing |
PLoS One
January 2025
SLAC National Accelerator Laboratory, Stanford University, Stanford, California, United States of America.
Protein-Protein Interactions (PPIs) are a key interface between virus and host, and these interactions are important to both viral reprogramming of the host and to host restriction of viral infection. In particular, viral-host PPI networks can be used to further our understanding of the molecular mechanisms of tissue specificity, host range, and virulence. At higher scales, viral-host PPI screening could also be used to screen for small-molecule antivirals that interfere with essential viral-host interactions, or to explore how the PPI networks between interacting viral and host genomes co-evolve.
View Article and Find Full Text PDFAnal Chem
November 2024
Department of Biotechnology, Oswaldo Cruz Foundation, Eusébio 61773-270, Brazil.
Emerging and evolving Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) lineages, adapted to changing epidemiological conditions, present unprecedented challenges to global public health systems. Here, we introduce an adapted analytical approach that complements genomic sequencing, applying a cost-effective quantitative polymerase chain reaction (qPCR)-based assay. Viral RNA samples from SARS-CoV-2 positive cases detected by diagnostic laboratories or public health network units in Ceará, Brazil, were tracked for genomic surveillance and analyzed by using paired-end sequencing combined with integrative genomic analysis.
View Article and Find Full Text PDFFront Cell Infect Microbiol
August 2024
Virology Department, Max-von-Pettenkofer Institute, Ludwig-Maximilians-University Munich, Munich, Germany.
Introduction: Oxysterol-binding protein (OSBP) is known for its crucial role in lipid transport, facilitating cholesterol exchange between the Golgi apparatus and endoplasmic reticulum membranes. Despite its established function in cellular processes, its involvement in coronavirus replication remains unclear.
Methods: In this study, we investigated the role of OSBP in coronavirus replication and explored the potential of a novel OSBP-binding compound, ZJ-1, as an antiviral agent against coronaviruses, including SARS-CoV-2.
Int J Mol Sci
June 2024
Department of Genetics and Genomics, Mydnavar, 28475 Greenfield Rd, Southfield, MI 48076, USA.
An estimation of the proportion of nonsynonymous to synonymous mutation (dn/ds, ω) of the SARS-CoV-2 genome would indicate the evolutionary dynamics necessary to evolve into novel strains with increased infection, virulence, and vaccine neutralization. A temporal estimation of ω of the whole genome, and all twenty-nine SARS-CoV-2 genes of major virulent strains of alpha, delta and omicron demonstrates that the SARS-CoV-2 genome originally emerged (ω ~ 0.04) with a strong purifying selection (ω < 1) and reached (ω ~ 0.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
October 2024
Laboratory of Experimental Biochemistry and Toxicology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil. Electronic address:
Responsible for COVID-19, SARS-CoV-2 is a coronavirus in which contagious variants continue to appear. Therefore, some population groups have demonstrated greater susceptibility to contagion and disease progression. For these reasons, several researchers have been studying the SARS-CoV-2/human interactome to understand the pathophysiology of COVID-19 and develop new pharmacological strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!