The manufacturing of modern scaffolds with customized geometry and personalization has become possible due to the three-dimensional (3D) printing technique. A novel type of 3D-printed scaffolds for bone tissue regeneration based on poly(ε-caprolactone) (PCL) filled with nanocrystalline cellulose modified by poly(glutamic acid) (PGlu-NCC) has been proposed in this study. The 3D printing set-ups were optimized in order to obtain homogeneous porous scaffolds. Both polymer composites and manufactured 3D scaffolds have demonstrated mechanical properties suitable for a human trabecular bone. Compression moduli were in the range of 334-396 MPa for non-porous PCL and PCL-based composites, and 101-122 MPa for porous scaffolds made of the same materials. In vitro mineralization study with the use of human mesenchymal stem cells (hMSCs) revealed the larger Ca deposits on the surface of PCL/PGlu-NCC composite scaffolds. Implantation of the developed 3D scaffolds into femur of the rabbits was carried out to observe close and delayed effects. The histological analysis showed the lowest content of immune cells and thin fibrous capsule, revealing low toxicity of the PCL/PGlu-NCC scaffolds seeded with rabbit MSCs (rMSCs) to the surrounding tissues. The most pronounced result on the generation of new bone tissue after implantation of PCL/PGlu-NCC + rMSCs scaffolds was detected by both microcomputed tomography and histological analysis. Around 33% and 55% of bone coverage were detected for composite 3D scaffolds with adhered rMSCs after 1 and 3 months of implantation, respectively. This achievement can be a result of synergistic effect of PGlu, which attracts calcium ions, and stem cells with osteogenic potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.35100 | DOI Listing |
Glycoconj J
January 2025
Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy.
Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Chemical Engineering, Barcelona East School of Engineering (EEBE), Polytechnic University of Catalonia, Av. Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain.
This study explores the characterization and application of poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) synthesized from organic residues, specifically milk and molasses. Six PHBV samples with varying 3-hydroxyvalerate (3HV) content (7%, 15%, and 32%) were analyzed to assess how 3HV composition influences their properties. Comprehensive characterization techniques, including NMR, FTIR, XRD, DSC, TGA, and tensile-stress test, were used to evaluate the molecular structure, thermal properties, crystalline structure, and mechanical behavior.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
Phosphate invert glasses (PIGs) have been attracting attention as materials for bone repair. PIGs have a high flexibility in chemical composition because they are composed of orthophosphate and pyrophosphate and can easily incorporate various ions in their glass networks. In our previous work, incorporation of niobium (Nb) into melt-quench-derived PIGs was effective in terms of controlling their ion release, and Nb ions promoted the activity of osteoblast-like cells.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland.
The development of new graphene-based materials necessitates the application of suitable material imaging techniques, especially for the identification of defects in the graphene structure and its continuity. For this purpose, it is natural to use one of the main properties of graphene-electrical conductivity. In this work, we prepare a 9 cm large-area monolayer graphene membrane on porous scaffolding sealed with either GO or rGO.
View Article and Find Full Text PDFMolecules
January 2025
Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan International Joint Laboratory of Sustainable Polymers, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. Herein, a multifunctional composite phase change material (CPCM) is developed using a balsa-derived morphology genetic scaffold, engineered via bionic catechol surface chemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!