Absence of the Rpb9 subunit of RNA polymerase II reduces the chronological life span in fission yeast.

J Basic Microbiol

University School of Biotechnology (USBT), Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India.

Published: August 2022

AI Article Synopsis

  • Rpb9 is a subunit of fission yeast RNA polymerase II, which is non-lethal but crucial for growth and survival under stress, revealing its importance in cellular functions.
  • The absence of Rpb9 leads to reduced lifespan, heightened sensitivity to oxidative stress, and increased reactive oxygen species in fission yeast.
  • The study identifies key regions of Rpb9 linked to aging and shows that Rpb9 orthologs from budding yeast and humans can compensate for its absence, highlighting its evolutionary significance.

Article Abstract

Fission yeast RNA polymerase II consists of 12 subunits, Rpb1-Rpb12. Among these subunits, Rpb9 is the only subunit whose absence does not cause lethality under optimum growth conditions in fission yeast. However, an rpb9 null fission yeast mutant exhibits a slow-growth phenotype under optimum growth conditions and a defect in survival under environmental and genotoxic stress conditions. To further gain an understanding of its physiological roles, in the present study we have elucidated the role of the Rpb9 subunit in chronological aging using fission yeast as the model organism. Our results provide evidence that the absence of Rpb9 reduces the chronological life span in fission yeast. Our data further shows that lack of Rpb9 in fission yeast causes oxidative stress sensitivity and accumulation of reactive oxygen species during the stationary phase. Our domain mapping experiments have demonstrated that the Rpb9 region encompassing its amino-terminal zinc finger domain and the central linker region is important for the role of Rpb9 in chronological aging. Finally, we also show that expression of the budding yeast or human Rpb9 ortholog can functionally complement the reduced chronological life span phenotype of the fission yeast rpb9 deletion mutant. Taken together, our study has identified a new role of the Rpb9 subunit in chronological aging.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jobm.202200036DOI Listing

Publication Analysis

Top Keywords

fission yeast
32
rpb9 subunit
16
chronological life
12
life span
12
role rpb9
12
chronological aging
12
rpb9
10
yeast
9
absence rpb9
8
rna polymerase
8

Similar Publications

The Munc13/UNC-13 family protein Ync13 is essential for septum integrity and cytokinesis in fission yeast. To further explore the mechanism of Ync13 functions, spontaneous suppressors of mutants, which can suppress the colony-formation defects and lysis phenotype of mutant cells, are isolated and characterized. One of the suppressor mutants, -, shows defects in the cytokinetic contractile ring constriction, septation, and daughter-cell separation, similar to mutant.

View Article and Find Full Text PDF

In winemaking, malolactic fermentation (MLF), which converts L-malic acid to L-lactic acid, is often applied after the alcoholic fermentation stage to improve the sensory properties of the wine and its microbiological stability. MLF is usually performed by lactic acid bacteria, which, however, are sensitive to the conditions of alcoholic fermentation. Therefore, the development of wine yeast strains capable of both alcoholic fermentation and MLF is an important task.

View Article and Find Full Text PDF

SRPKs Homolog Dsk1 Regulates Homologous Recombination Repair in Schizosaccharomyces pombe.

Genes Cells

January 2025

Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China.

Serine-arginine protein kinases (SRPKs) play important roles in diverse biological processes such as alternative splicing and cell cycle. However, the functions of SRPKs in DNA damage response remain unclear. Here we characterized the function of SRPKs homolog Dsk1 in regulating DNA repair in the fission yeast Schizosaccharomyces pombe.

View Article and Find Full Text PDF

Yeast Dnm1 causes altered organelle dynamics and sheds light on the human DRP1 disease mechanism.

Mitochondrion

January 2025

Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India. Electronic address:

Mitochondrial morphology is a result of regulated opposite events called fission and fusion and requires the GTPase, dynamin-related protein 1 (DRP1/Dnm1), or its homologs. A recent clinical report identified a heterozygous missense mutation in the human DRP1 that replaces Glycine (G) 149 with Arginine (R) and results in debilitating conditions in the patient. In this study, we mimicked this mutation in yeast Dnm1 (G178R) and investigated the impact of the pathogenic mutation on the protein's function.

View Article and Find Full Text PDF

The SUMO-targeted ubiquitin ligase (STUbL) family is involved in multiple cellular processes via a wide range of mechanisms to maintain genome stability. One of the evolutionarily conserved functions of STUbL is to promote changes in the nuclear positioning of DNA lesions, targeting them to the nuclear periphery. In Schizossacharomyces pombe, the STUbL Slx8 is a regulator of SUMOylated proteins and promotes replication stress tolerance by counteracting the toxicity of SUMO conjugates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!