MicroRNA-26b regulates BMSC osteogenic differentiation of TMJ subchondral bone through β-catenin in osteoarthritis.

Bone

Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research & Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Orthodontics, Stomatological Hospital, Xi'an Jiaotong University, Xi'an, PR China. Electronic address:

Published: September 2022

Temporomandibular joint osteoarthritis (TMJ-OA) is a degenerative disease of the joint. The early manifestations of TMJ-OA are abnormal remodeling of condylar subchondral bone. In bone tissue, bone marrow mesenchymal stem cells (BMSCs) and osteoblasts play important roles in the differentiation and maturation of most hematopoietic cells. MicroRNA-26b (miR-26b) is upregulated during the osteogenesis of BMSCs, and miR-26b overexpression leads to the activation of β-catenin and the enhancement of osteogenesis and cartilage formation. However, the pathologic mechanism remains unclear. In the present study, we used a rat model with OA-like changes in the TMJ induced by experimental unilateral anterior crossbite (UAC) and found that the level of miR-26b was markedly lower in BMSCs from the subchondral bones of UAC rats than in those from sham control rats. MiR-26b overexpression by agomiR-26b increased condylar subchondral bone osteogenesis in UAC rats. Notably, although agomiR-26b primarily affected miR-26b levels in the subchondral bone (but not in cartilage or the synovium), the overexpression of miR-26b in BMSCs in UAC rats largely rescued OA-like cartilage degradation, while the inhibition of miR-26b in BMSCs exacerbated cartilage degradation in UAC rats. We measured the expression levels of β-catenin and related osteogenic and osteoclastic factors after using miR-26b mimics and inhibitors in vivo. Moreover, BMSCs were treated with the β-catenin blocker Wnt-C59 and then transfected with miR-26b mimics or inhibitors. Then, we examined the expression of β-catenin as the direct target of miR-26b. The results of the present study indicate that miR-26b may modulate subchondral bone loss induced by abnormal occlusion and influence the osteogenic differentiation of subchondral BMSCs through β-catenin in the context of TMJ-OA progression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2022.116448DOI Listing

Publication Analysis

Top Keywords

subchondral bone
20
uac rats
16
mir-26b
11
osteogenic differentiation
8
condylar subchondral
8
mir-26b overexpression
8
mir-26b bmscs
8
cartilage degradation
8
mir-26b mimics
8
mimics inhibitors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!