Molecular cloning, characterization, and tissue distribution of c-Myc from blood clam Tegillarca granosa and its role in cadmium-induced stress response.

Gene

Zhejiang Mariculture Research Institute, Zhejiang Key Lab of Exploitation and Preservation of Coastal Bio-Resource, Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Wenzhou 325005, China. Electronic address:

Published: August 2022

Cadmium (Cd) pollution threatens the cultivation of the blood clam Tegillarca granosa (T. granosa) in coastal regions of the East China Sea. The molecular mechanisms regulating Cd stress response and detoxification in blood clams are largely unclear. In the present study, the full-length T. granosa c-Myc (Tgc-Myc) cDNA was cloned for the first time. The 3063-bp cDNA consisted of a 129-bp 5' untranslated region (UTR), a 1746-bp 3' UTR, and a 1188-bp open reading frame encoding a predicted protein of 395 amino acid residues. The predicted protein had a calculated molecular weight of 44.9 kDa and an estimated isoelectric point of 6.82. The predicted protein contained an N-terminal transactivation domain and a C-terminal basic helix-loop-helix leucine zipper domain, which are conserved functional domains of c-Myc proteins. Tgc-Myc showed broad tissue distribution in blood clams, with the highest expression detected in the gill and hepatopancreas. Exposure to Cd, a major heavy metal pollutant in coastal regions of the East China Sea, induced Tgc-Myc expression in gill tissues. Tgc-Myc knockdown led to reduced expression of a variety of stress response/detoxification genes in blood clams cultivated in Cd-contaminated seawater. Tgc-Myc knockdown also led to decreased expression of IGF1R, a proto-oncogene that promotes cell proliferation. These findings indicated that Tgc-Myc regulates Cd-induced stress response and detoxification in blood clams. The upregulation of Tgc-Myc may serve as an approach to generate strains with an enhanced detoxification response and consequently a low heavy metal buildup.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2022.146611DOI Listing

Publication Analysis

Top Keywords

blood clams
16
stress response
12
predicted protein
12
tissue distribution
8
blood clam
8
clam tegillarca
8
tegillarca granosa
8
coastal regions
8
regions east
8
east china
8

Similar Publications

Hemocytes are the circulating immune-competent cells in bivalve mollusks and play a key role in several important functions of cell-mediated innate immunity. During the early stages of the immune response, hemocytes actively migrate to the site of infection. This inherent motility is a fundamental characteristic of these cells.

View Article and Find Full Text PDF

To compensate for changes in cell volume caused by changes in salt concentration, mollusks use regulatory mechanisms such as the regulation of volume decrease (RVD). This may increase the rate of aerobic metabolism and lead to an increase in reactive oxygen species (ROS). This study examined the production of ROS in the mitochondria of Anadara kagoshiensis hemocytes, the effect of mitochondrial inhibitors on osmotic stability in hemocytes, and the dynamics of changes in ROS levels and mitochondrial membrane potential when RVD is activated under hypo-osmotic conditions.

View Article and Find Full Text PDF

Mussel-inspired modified regenerated cellulose as tissue adhesive and antibacterial gauze: A promising approach for rapid hemostasis in non-compressible hemorrhage.

Carbohydr Polym

February 2025

Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Clinical Research Development Unite of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran. Electronic address:

Uncontrollable hemorrhage leads to high mortality rates; thus, engineering effective hemostatic materials is crucial for rapid hemostasis. Developing hemostatic materials for rapid coagulation, antibacterial activity, and easy removal without compromising clot integrity remains a challenge. Herein, a multifunctional hemostatic gauze was engineered by modifying regenerated cellulose textile through multiple sequential chemical reactions, including carboxymethylation, crosslinking with CaCl/ZnCl solution, oxidation, and polymerization with dopamine.

View Article and Find Full Text PDF

The growing usage of glucocorticoids for a variety of diseases raises concerns since these drugs, including the anti-inflammatory dexamethasone (DEX), are frequently found in the environment. The impact of DEX was evaluated on mussels Mytilus galloprovincialis (Lamarck, 1819) by exposure to environmental concentrations (C1: 4 ng/L; C2: 40 ng/L; C3: 400 ng/L; C4: 2000 ng/L), and sampling at 3 (T3), 6 (T6), and 12 (T12) days. A multi-biomarker approach was applied on gills, involved in gas exchange, feed filtering, and osmoregulation.

View Article and Find Full Text PDF

CgANT2 regulates mitophagy of oyster haemocyte response against bacterial stimulation.

Dev Comp Immunol

January 2025

Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China. Electronic address:

Adenine nucleotide translocator (ANT) is a major molecule in the inner membrane of mitochondria that plays an important role in regulating mitophagy. In the present study, a conserved ANT2 homologue (designated as CgANT2) was identified and functionally characterized in oyster Crassostrea gigas. There were three typical Mito_carr tandem repeats in CgANT2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!