We demonstrated recently that supaglutide, a novel GLP-1 mimetic generated by recombinant fusion protein techniques, exerted hypoglycemic effects in type 2 diabetes db/db mice and spontaneous diabetic monkeys. In this study, we investigated the pharmacokinetics and pharmacodynamics of supaglutide by single subcutaneous and intravenous injection(s) in rats and rhesus monkeys, as well as fourconsecutive subcutaneous injections in monkeys.We found the half-life (t1/2) of supaglutide was 39.7 h and 35.8 h at dosing 0.1 mg/kg upon subcutaneous or intravenous administration respectively, in rhesus monkeys. The plasma supaglutide peaked at 8-10 h, while the plasma drug exposure levels increased with the increase of dose, showing approximately a linear pharmacokinetic characteristic. The elimination kinetics (Ke) were found to be similar between subcutaneous (∼0.025 in rats and ∼0.018 in monkeys) and intravenous administration (0.021 in rats and 0.020 in monkeys), whereas the bioavailability was found to be 31.1% in rats and 63.9% in monkeys. In monkeys, a single dose injection of supaglutide markedly decreased the random blood glucose levels that reaching the maxima effects in 14-16 h, gradually recovered and returned to the baseline level approximately after 72 h. I-supaglutide was found mainly distributed in the serum and organs rich in blood supply. Urine was found to be the primary excretion route of supaglutide, following by feces, but mostly not in bile.Our results show that supaglutide possess linear pharmacokinetic characteristics associated with prolonged hypoglycemic effects inanimals,suggestinga potential weekly dosing therapeutic reagent for the treatment of type 2 diabetes and metabolic diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2022.106218 | DOI Listing |
Diabetol Metab Syndr
December 2024
Shanghai Innogen Pharmaceutical Co., Ltd, Shanghai, China.
Background: Glucagon-like peptide 1 (GLP-1) is an incretin hormone and plays an important role in regulating glucose homeostasis. GLP-1 has a short half-life due to degrading enzyme dipeptidyl peptidase-IV and rapid kidney clearance, which limits its clinical application as a therapeutic agent. We demonstrated previously that supaglutide, a novel long-acting GLP-1 analog, exerted hypoglycemic, hypolipidemic, and weight loss effects in type 2 diabetic db/db mice, DIO mice, and diabetic monkeys.
View Article and Find Full Text PDFEur J Pharm Sci
August 2022
Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China; Shanghai Yinnuo Pharmaceutical Co., Ltd., Shanghai, China. Electronic address:
We demonstrated recently that supaglutide, a novel GLP-1 mimetic generated by recombinant fusion protein techniques, exerted hypoglycemic effects in type 2 diabetes db/db mice and spontaneous diabetic monkeys. In this study, we investigated the pharmacokinetics and pharmacodynamics of supaglutide by single subcutaneous and intravenous injection(s) in rats and rhesus monkeys, as well as fourconsecutive subcutaneous injections in monkeys.We found the half-life (t1/2) of supaglutide was 39.
View Article and Find Full Text PDFJ Endocrinol
February 2021
Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China.
Glucagon-like peptide 1 (GLP-1) is an insulinotropic hormone and plays an important role in regulating glucose homeostasis. GLP-1 has a short half-life (t1/2 < 2 min) due to degrading enzyme dipeptidyl peptidase-IV and rapid kidney clearance, which limits its clinical application as a therapeutic reagent. We demonstrated recently that supaglutide, a novel GLP-1 mimetic generated by recombinant fusion protein techniques, exerted hypoglycemic and β-cell trophic effects in type 2 diabetes db/db mice.
View Article and Find Full Text PDFFront Physiol
July 2019
Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China.
Glucagon-like peptide-1 (GLP-1), an incretin hormone plays an important role in regulating glucose homeostasis. The therapeutic use of native GLP-1 is inadequate due to its short half-life. We recently developed a novel GLP-1 mimetics supaglutide, and demonstrated that this formulation retained native GLP-1 biological activities and possessed long-lasting GLP-1 actions.
View Article and Find Full Text PDFFront Physiol
May 2017
Department of Endocrinology and Metabolism, Huashan Hospital, Fudan UniversityShanghai, China.
GLP-1, an important incretin hormone plays an important role in the regulation of glucose homeostasis. However, the therapeutic use of native GLP-1 is limited due to its short half-life. We recently developed a novel GLP-1 mimetics (supaglutide) by genetically engineering recombinant fusion protein production techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!