Mammalian toll-like receptor 5 (TLR5) is crucial for recognizing bacterial flagellin and initiating the inflammatory signaling cascades via myeloid differentiation factor 88 (MyD88) signaling pathway, which plays vital roles in innate immune against pathogenic bacteria. Herein, we reported the signaling pathway and antibacterial property of tongue sole (Cynoglossus semilaevis) membrane forms of TLR5 (i.e. CsTLR5M1and CsTLR5M2). CsTLR5M1/M2 contain 936 and 885 amino acid residues respectively. CsTLR5M1 shares 86.7% overall sequence identities with CsTLR5M2. CsTLR5M1/M2 possess the same extracellular domain (ECD) and transmembrane domain (TMD), but the different toll-interleukin-1 receptor (TIR) domain. CsTLR5M1/M2 expression occurred constitutively in multiple tissues and regulated by bacterial stimulation. Recombinant CsTLR5M1/M2 (rCsTLR5M) could bind to flagellin and Gram-negative/positive bacteria, which could suppress bacterial growth. Stimulation of the CsTLR5M pathway by flagellin resulted in increased expression of MyD88-dependent signaling molecules and inflammatory cytokines. Blocking rCsTLR5M by antibody markedly reduced the phagocytosis and ROS production of peripheral blood leukocytes (PBLs), which in turn in vivo promoted the dissemination of bacteria. Overall, these observations add new insights into the signaling pathway and immune function of teleost TLR5M.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2022.05.031 | DOI Listing |
Biochem Genet
December 2024
Department of Obstetrics and Gynecology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), No.216, Guanshan Avenue, Hongshan District, Wuhan, 430074, Hubei, China.
Cisplatin, a platinum-based chemotherapeutic agent, can be used to treat cervical cancer (CC), but cisplatin resistance is increased during the cisplatin treatment. Long non-coding RNA PGM5-AS1 reportedly participates in CC tumorigenesis; however, its role in CC patients with cisplatin resistance has not been revealed. The present aimed to examine the role of PGM5-AS1 in modulating cisplatin resistance in CC.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Thung Phayathai, Ratchathewi, Bangkok, 10400, Thailand.
Wnt signaling is a critical pathway implicated in cancer development, with Frizzled proteins, particularly FZD10, playing key roles in tumorigenesis and recurrence. This study focuses on the potential of repurposed FDA-approved drugs targeting FZD10 as a therapeutic strategy for nasopharyngeal carcinoma (NPC). The tertiary structure of human FZD10 was constructed using homology modeling, validated by Ramachandran plot and ProQ analysis.
View Article and Find Full Text PDFSci Rep
December 2024
Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, Jiangsu, China.
Yu-Ping-Feng-San (YPF) is a famous classical Chinese medicine formula known for its ability to boost immunity. YPF has been applied to enhance the immune status of tumor patients in clinical practice. However, there is still a lack of research on its immune regulatory effects and mechanisms in the tumor microenvironment.
View Article and Find Full Text PDFSci Rep
December 2024
School of Basic Medicine, Dali University, Dali, 671003, Yunnan, China.
Resolvin D1 (RvD1) is an endogenous anti-inflammatory mediator that modulates the inflammatory response and promotes inflammation resolution. RvD1 has demonstrated neuroprotective effects in various central nervous system contexts; however, its role in the pathophysiological processes of intracerebral hemorrhage (ICH) and the potential protective mechanisms when combined with exercise rehabilitation remain unclear. A mouse model of ICH was established using collagenase, and treatment with RvD1 combined with three weeks of exercise rehabilitation significantly improved neurological deficits, muscle strength, learning, and memory in ICH mice while reducing anxiety-like behavior.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
Intracerebral hemorrhage (ICH) is a common cerebrovascular disease characterized by a high incidence, disability rate, and mortality. Epigallocatechin gallate (EGCG), a key catechin compound found in green tea, has received increasing attention for its potential neuroprotective and therapeutic effects in neurological disorders. Studies have indicated that EGCG may influence various signaling pathways and molecular targets, including the inhibition of oxidative stress, reduction of inflammatory responses, suppression of cell apoptosis, regulation of cell survival, and enhancement of autophagy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!