The evaluation of extinction risk has typically focused on individual species, although a shift to a focus on ecosystem functioning would appear to be an urgent priority for conservation planning, especially considering that a sixth mass extinction event has already begun. In the present study, we investigated how fish extinction driven by habitat loss may modify the functioning of freshwater Amazonian ecosystems. We sampled the fish and environmental conditions of 63 streams in the eastern Amazon and simulated extinction based on the vulnerability of the species to habitat loss, which is the principal threat to tropical biodiversity. The simulated extinction of vulnerable species led to a decrease in both the mean body size of the community and functional rarity and culminated in abrupt losses of ecosystem functions after 5% and 10% of extinction at local and regional scales. Our functional approach demonstrated the progressive loss of ecological functions in Amazon streams, which may collapse altogether following the extinction of functions related to protection against biological invasions, and associated alterations in nutrient cycling and water quality. We provide robust predictions on the modification of the ecosystem following the extinction of fish species, which is a major step toward the development of effective conservation measures that ensure the avoidance of the predicted processes, and help to prevent the loss of biodiversity and the potentially irreversible modifications to ecosystem functioning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.156210 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!