A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Training, validation, and clinical implementation of a deep-learning segmentation model for radiotherapy of loco-regional breast cancer. | LitMetric

Aim: To train and validate a comprehensive deep-learning (DL) segmentation model for loco-regional breast cancer with the aim of clinical implementation.

Methods: DL segmentation models for 7 clinical target volumes (CTVs) and 11 organs at risk (OARs) were trained on 170 left-sided breast cancer cases from two radiotherapy centres in Norway. Another 30 patient cases were used for validation, which included the evaluation of Dice similarity coefficient and Hausdorff distance, qualitative scoring according to clinical usability, and relevant dosimetric parameters. The manual inter-observer variation (IOV) was also evaluated and served as a benchmark. Delineation of the target volumes followed the ESTRO guidelines.

Results: Based on the geometric similarity metrics, the model performed significantly better than IOV for most structures. Qualitatively, no or only minor corrections were required for 14% and 71% of the CTVs and 72% and 26% of the OARs, respectively. Major corrections were required for 15% of the CTVs and 2% of the OARs. The most frequent corrections occurred in the cranial and caudal parts of the structures. The dose coverage, based on D98 > 95%, was fulfilled for 100% and 89% of the breast and lymph node CTVs, respectively. No differences in OAR dose parameters were considered clinically relevant. The model was implemented in a commercial treatment planning system, which generates the structures in 1.5 min.

Conclusion: Convincing results from the validation led to the decision of clinical implementation. The clinical use will be monitored regarding applicability, standardization and efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.radonc.2022.05.018DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
clinical implementation
8
deep-learning segmentation
8
segmentation model
8
loco-regional breast
8
cancer aim
8
target volumes
8
corrections required
8
clinical
6
training validation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!