The effect of mechanical shocks on the initial aggregation behavior of yeast prion protein Sup35NM.

Int J Biol Macromol

Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, The University of Science and Technology of China, Hefei, Anhui 230026, China.

Published: July 2022

To study the effect of mechanical shocks on the neurodegenerative-related fibril-formation protein, the aggregation process, especially the initial oligomerization of a model yeast prion protein Sup35NM, was followed and analyzed by using a combination of laser light scattering, the Smoluchowski coagulation analysis, Thioflavin T fluorescence assay, and transmission electron microscopy. We find that an initial short-time mechanical shock (ultrasonication or circular shaking) affects the in vitro association kinetics of neurodegenerative-related Sup35NM proteins in dilute PBS solutions by generating a relatively larger number of smaller non-structured oligomers that further serve as tiny "crystallization" seeds in promoting the formation of longer fibrils. Our study provides an effective and quantitative method to investigate the initial oligomerization kinetics of amyloid fibrils formation. Furthermore, the current results may shed light on the molecular understanding on how environmental factors increase the risk of neurodegenerative diseases such as dementia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.05.127DOI Listing

Publication Analysis

Top Keywords

mechanical shocks
8
yeast prion
8
prion protein
8
protein sup35nm
8
initial oligomerization
8
initial
4
shocks initial
4
initial aggregation
4
aggregation behavior
4
behavior yeast
4

Similar Publications

: This study explores how thoracic orientation affects lung pressure and injury outcomes from shock waves, building on earlier research that suggested human posture impacts injury severity. : A layered finite element model of the chest was constructed based on the Chinese Visual Human Dataset (CVH), including the rib and intercostal muscle layers. The dynamic response of the chest under 12 different angle-oriented shock waves under incident pressures of 200 kPa and 500 kPa was calculated.

View Article and Find Full Text PDF

Measurement and spectral analysis of medical shock wave parameters based on flexible PVDF sensors.

Phys Eng Sci Med

January 2025

School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100191, China.

Extracorporeal shock wave therapy (ESWT) achieves its therapeutic purpose mainly through the biological effects produced by the interaction of shock waves with tissues, and the accurate measurement and calculation of the mechanical parameters of shock waves in tissues are of great significance in formulating the therapeutic strategy and evaluating the therapeutic effect. This study utilizes the approach of implanting flexible polyvinylidene fluoride (PVDF) vibration sensors inside the tissue-mimicking phantom of various thicknesses to capture waveforms at different depths during the impact process in real time. Parameters including positive and negative pressure changes (P, P), pulse wave rise time ([Formula: see text]), and energy flux density (EFD) are calculated, and frequency spectrum analysis of the waveforms is conducted.

View Article and Find Full Text PDF

The concomitant use of IMPELLA and veno-arterial extracorporeal membrane oxygenation (V-A ECMO) (ECPELLA) has been increasingly used to treat severe cardiogenic shock. However, the relationship between severity of heart failure on admission and prognosis based on differences in the mechanical circulatory support (MCS) is not fully understood. This study evaluated the association between lactate levels on admission and clinical outcomes based on differences in MCS.

View Article and Find Full Text PDF

Underwater Superoleophobic and Transparent Films with Mechanical Robustness and High Durability in Harsh Environments.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.

Underwater superoleophobic and transparent (UST) films are promising in applications, such as advanced optical devices in marine environments. However, the mechanical robustness and durability in harsh environments of the existing UST films are still unsatisfactory. In this work, we present a free-standing nacre-inspired mineralized UST (NIM-UST) film with high aragonite content and excellent mechanical properties toward robust underwater superoleophobicity on two surfaces and transparency (94%) in harsh seawater environments.

View Article and Find Full Text PDF

Challenges in Rehabilitation of a Tetanus Patient With Severe Complications.

Cureus

December 2024

Department of Rehabilitation Medicine, School of Medicine, Showa University, Tokyo, JPN.

Tetanus is a rare but life-threatening neurological disorder caused by neurotoxins produced by . Although mortality rates have significantly decreased with modern intensive care, severe cases remain challenging due to prolonged Intensive Care Unit (ICU) stays, complications, and rehabilitation barriers. We report the case of an 81-year-old male with a history of hypertension and femoral neck fracture who developed severe tetanus following a contaminated forehead laceration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!