Flows and connections of metabolic nodes in Beijing-Tianjin-Hebei Region and its cities: A study at two scales.

J Environ Manage

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.

Published: September 2022

The metabolic processes of cities and their embedded regions have received great attention, but it is still unclear how the metabolic processes change at the scale from cities to urban agglomerations. In view of the lack of multi-scale research in the field of urban metabolism, this study took Beijing-Tianjin-Hebei region, one of the urban agglomerations with largest economic scales in China, as a case to construct metabolic network models at two scales of city and urban agglomeration. The material transfers between nodes were calculated, and the connection degree index was put forward in the ecological network analysis to quantify the influence of a single node on the network when multi-level transfers were considered. On this basis, the similarities and differences of metabolic nodes at the two scales were analyzed. The results showed that nearly 97% of the volume of material transfers in the urban agglomeration was concentrated within the cities, among which the transfer volumes of Tangshan, Handan, and Shijiazhuang were more than 600 Mt. Manufacturing and environment were the major contributors to material transfers. The connection degrees of nodes had both commonness and differences at the two scales. In general, the connection degrees at the urban scale were relatively homogeneous, while their difference was large at the urban agglomeration scale. The connection degrees of nodes in Langfang were prominent at the urban agglomeration scale. The connection degrees of environment and manufacturing ranked top 3 at both scales. Meanwhile, the connection degree of energy conversion at the urban scale was relatively high, while its influence was replaced by mining sector at the urban agglomeration scale. The analysis of material metabolic nodes in Beijing-Tianjin-Hebei region can provide theoretical supports to position the key points in the process of material utilization in the cities or the urban agglomeration, and help to identify the breakthrough points for subsequent regulatory.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.115371DOI Listing

Publication Analysis

Top Keywords

urban agglomeration
24
connection degrees
16
metabolic nodes
12
beijing-tianjin-hebei region
12
material transfers
12
agglomeration scale
12
urban
11
nodes beijing-tianjin-hebei
8
metabolic processes
8
cities urban
8

Similar Publications

Central Asia is an ecologically fragile arid zone and a typical mixed salt‒sand region. The socioeconomic and ecological problems attributed to the shrinking of the Aral Sea in Central Asia are notable concerns within the international community. In this study, the characteristics of salt dust aerosols from the Aral Sea were analysed to explore their interannual variation characteristics and analyse the spatial and temporal distributions of salt dust sources and transport and dispersion pathways.

View Article and Find Full Text PDF

This study expands the original two-dimensional carbon footprint model into a three-dimensional model form. Introduce two indicators of carbon footprint depth (CF) and size (CF) to form a three-dimensional carbon footprint model (CF), which is used to respectively represent the occupation and consumption of natural capital reserves by human activities' carbon emissions. Based on the 3D carbon footprint model, this paper calculated the CF, CF, and CF for four different urban agglomerations of China (BTH, YRD, PRD, and CY) spanning from 2000 to 2017.

View Article and Find Full Text PDF

Investigating the effects of urbanization at the county level on the balance of the carbon budget is essential for progress toward achieving "dual carbon" objectives at the county scale. Based on land use and economic data, this study elucidates the spatiotemporal evolution of urbanization and carbon budget balance ratio in 84 counties in Jiangxi Province from 1980 to 2020. Optimal geographic detectors and geographically weighted random forests were used to explore the impact of urbanization on the carbon budget balance ratio.

View Article and Find Full Text PDF

Land use and landscape pattern changes in the Fenhe River Basin, China.

Sci Rep

January 2025

School of Physical Education, Shanxi University, Taiyuan, 030006, China.

The composition and pattern of ecosystems play a crucial role in determining the overall condition and spatial variations of ecosystem services. In this study, we explored the Normalized Difference Vegetation Index (NDVI), six land use/land cover change (LULC) types, and their landscape patterns to reflect spatial-temporal dynamics from 2010 to 2020 in the upper and middle reaches of the Fenhe River Basin. The trend analysis of Mann-Kendall tests was used to assess the NDVI variation of each pixel over the past decade.

View Article and Find Full Text PDF

The urban agglomeration in central Guizhou is located in a crustal deformation area caused by tectonic uplift between the Mesozoic orogenic belt of East Asia and the Alpine-Tethys Cenozoic orogenic belt, with high mountains, steep slopes, fractured rock masses and a fragile ecological environment; this area is the most affected by landslides in Guizhou Province, China. In the past decade, there were a total of 613 medium and large landslide disasters, resulting in 137 deaths and a direct economic loss of 1.032 billion yuan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!