Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Various piezoelectric nanomaterials were utilized in ultrasound-mediated atom transfer radical polymerization (ATRP), owing to their outstanding piezoelectric effect. However, the relationship between the morphology of those piezocatalysts and polymerization has not been clearly established. Herein, we employed different piezoelectric zinc oxide (ZnO) nanomaterials to achieve novel mechano-induced ATRP (mechano-ATRP). Based on the synergistic effect of piezoelectric properties and specific surface area, the catalytic activity of 1D ZnO nanorods (1D-ZnO NRs) with increased aspect ratio outperformed that of 0D ZnO nanoparticles (0D-ZnO NPs). Compared to the conventional ATRP system, this system exhibited extraordinary activity toward the less activated monomer acrylonitrile (67% conversion after 6 h), with a narrow molecular weight distribution (polydispersity index ∼ 1.19). Furthermore, implications of ZnO loading, copper salt amount, degree of polymerization, monomer, and solvent were also studied for the highly efficient mechano-ATRP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.2c01106 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!