A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dimensional Optimization for ZnO-Based Mechano-ATRP with Extraordinary Activity. | LitMetric

Dimensional Optimization for ZnO-Based Mechano-ATRP with Extraordinary Activity.

J Phys Chem Lett

Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.

Published: June 2022

Various piezoelectric nanomaterials were utilized in ultrasound-mediated atom transfer radical polymerization (ATRP), owing to their outstanding piezoelectric effect. However, the relationship between the morphology of those piezocatalysts and polymerization has not been clearly established. Herein, we employed different piezoelectric zinc oxide (ZnO) nanomaterials to achieve novel mechano-induced ATRP (mechano-ATRP). Based on the synergistic effect of piezoelectric properties and specific surface area, the catalytic activity of 1D ZnO nanorods (1D-ZnO NRs) with increased aspect ratio outperformed that of 0D ZnO nanoparticles (0D-ZnO NPs). Compared to the conventional ATRP system, this system exhibited extraordinary activity toward the less activated monomer acrylonitrile (67% conversion after 6 h), with a narrow molecular weight distribution (polydispersity index ∼ 1.19). Furthermore, implications of ZnO loading, copper salt amount, degree of polymerization, monomer, and solvent were also studied for the highly efficient mechano-ATRP.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.2c01106DOI Listing

Publication Analysis

Top Keywords

extraordinary activity
8
dimensional optimization
4
optimization zno-based
4
zno-based mechano-atrp
4
mechano-atrp extraordinary
4
piezoelectric
4
activity piezoelectric
4
piezoelectric nanomaterials
4
nanomaterials utilized
4
utilized ultrasound-mediated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!