The advent of HIV-Integrase inhibitors (IN) has marked a significant impact on the lives of HIV patients. Since the launch of the first anti retro-viral drug "Azidothymidine" to the recent advances of IN inhibitors, about 27.4 million people benefit by antiretroviral therapy (ART). The path had been challenging due to many crossroads, leading to the discovery of newer targets. One such recent ART target is Integrase. Use of Integrase inhibitors has surpassed the usage of all other ART owing to a strong barrier to resistance and have been reported to be the first-line therapy. Raltegravir, Elvitegravir, Dolutegravir and Bictegravir are US FDA approved IN inhibitors. The high usage of ART created an opportunity to study various analytical techniques for IN inhibitors. Hitherto, no review encompassing all IN inhibitors is presented. Herein, this review describes the analytical techniques employed for IN inhibitors estimation and quantification reported in the literature and official compendia. Literature suggests that most studies focus on LC-MS/MS and HPLC methods for drug estimation, and few reports suggest spectrophotometric, spectrofluorimetric and electrochemical methods. Furthermore, the review presents the techniques that describe the quantification of integrase drugs in various matrices. Although, antiretroviral drugs are extensively used but data suggests that limited studies have been conducted for determination of impurity profile and stability. This therefore, presents a scope to detect and validate impurities in order to meet ICH guidelines for their limits and further to improve the quality and safety of antiretroviral drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408347.2022.2080493 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!