Synthetic analogues of natural oligonucleotides known as locked nucleic acids (LNAs) offer superior nuclease resistance and cytocompatibility for numerous scenarios ranging from detection to intracellular imaging of nucleic acids. While recognized as stronger hybridization partners than equivalent DNA residues, quantitative analysis of LNA hybridization activity is lacking, especially with respect to competitive displacement of the original hybridization partner by another oligonucleotide. In the current study, we perform measurements of toehold-mediated competitive displacement of soluble, fluorescently labeled primary targets from probe strands immobilized on microspheres using high throughput flow cytometry. Both LNA-DNA hybrid sequences and pure DNA sequences are employed as the immobilized strands, as soluble, fluorescently labeled 9-base-long primary targets, and as unlabeled 15-base-long secondary or competitive targets. In addition to comparing chemically substituted and unsubstituted sequences, we explore the effects of mismatched primary targets and the location of the toehold segment within the primary duplexes on the resulting displacement profiles. The primary duplex or double-stranded probe (dsprobe) systems implemented here exhibited varying responses to unlabeled secondary targets ranging from surprisingly modest primary target displacement activity despite the presence of a six base-long nucleotide toehold segment at the dsprobe free end to distinctive displacement profiles sensitive to LNA substitutions and the placement of the toehold segment closer to the microsphere surface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.2c00220DOI Listing

Publication Analysis

Top Keywords

competitive displacement
12
primary targets
12
toehold segment
12
quantitative analysis
8
locked nucleic
8
nucleic acids
8
soluble fluorescently
8
fluorescently labeled
8
displacement profiles
8
displacement
6

Similar Publications

Beneficial death: A substantial element of evolution?

Biogerontology

January 2025

Clinic for Heart Surgery (UMH), Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany.

If a shortened lifespan is evolutionarily advantageous, it becomes more likely that nature will strive to change it accordingly, affecting how we understand aging. Premature mortality because of aging would seem detrimental to the individual, but under what circumstances can it be of value? Based on a relative incremental increase in fitness, simulations were performed to reveal the benefit of death. This modification allows for continuous evolution in the model and establishes an optimal lifespan even under challenging conditions.

View Article and Find Full Text PDF

Stacking interactions are a recurring motif in supramolecular chemistry and biochemistry, where a persistent theme is a preference for parallel-displaced aromatic rings rather than face-to-face π-stacking. This is typically explained in terms of quadrupole-quadrupole interactions between the arene moieties but that interpretation is inconsistent with accurate calculations, which reveal that the quadrupolar picture is qualitatively wrong. At typical π-stacking distances, quadrupolar electrostatics may differ in sign from an exact calculation based on charge densities of the interacting arenes.

View Article and Find Full Text PDF

Analyzing the impact of prolonged pauses on soccer performance.

Sci Rep

January 2025

LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, Madrid, Spain.

During breaks or playing period changes, players' accumulated workload, physiological alterations, body composition factors, sleep, and health-related qualities can factor into soccer performance. This research examined the impact of prolonged pauses, including breaks due to the 2022 FIFA World Cup and an earthquake tragedy, on running displacements and ball in-play duration during the 2022/23 Turkish Super League season. The secondary purpose was to determine the relationship between performance metrics and competition outcomes (i.

View Article and Find Full Text PDF

Competitive displacement of lipoprotein lipase from heparan sulfate is orchestrated by a disordered acidic cluster in GPIHBP1.

J Lipid Res

January 2025

Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Movement of lipoprotein lipase (LPL) from myocytes or adipocytes to the capillary lumen is essential for intravascular lipolysis and plasma triglyceride homeostasis-low LPL activity in the capillary lumen causes hypertriglyceridemia. The trans-endothelial transport of LPL depends on ionic interactions with GPIHBP1's intrinsically disordered N-terminal tail, which harbors two acidic clusters at positions 5-12 and 19-30. This polyanionic tail provides a molecular switch that controls LPL detachment from heparan sulfate proteoglycans (HSPGs) by competitive displacement.

View Article and Find Full Text PDF

N influences on CH accumulation and displacement in shale by molecular dynamics.

Sci Rep

January 2025

School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, 2052, Australia.

N is generally employed as a displacement agent to enhance gas recovery in shale gas-bearing reservoirs. However, the primary displacement mechanism in the subsurface still needs to be clarified due to the characteristics of shale reservoirs with low porosity and abundant nanopores. This study employs the Molecular Dynamics (MD) simulation method to investigate the effects of N on the CH accumulation and displacement processes by adopting practical conditions in the subsurface environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!