In both human and nonhuman primates (NHP), the medial prefrontal region, defined as the supplementary eye field (SEF), can indirectly influence behavior selection through modulation of the primary selection process in the oculomotor structures. To perform this oculomotor control, SEF integrates multiple cognitive signals such as attention, memory, reward, and error. As changes in pupil responses can assess these cognitive efforts, a better understanding of the precise dynamics by which pupil diameter and medial prefrontal cortex activity interact requires thorough investigations before, during, and after changes in pupil diameter. We tested whether SEF activity is related to pupil dynamics during a mixed pro/antisaccade oculomotor task in 2 macaque monkeys. We used functional ultrasound (fUS) imaging to examine temporal changes in brain activity at the 0.1-s time scale and 0.1-mm spatial resolution concerning behavioral performance and pupil dynamics. By combining the pupil signals and real-time imaging of NHP during cognitive tasks, we were able to infer localized cerebral blood volume (CBV) responses within a restricted part of the dorsomedial prefrontal cortex, referred to as the SEF, an area in which antisaccade preparation activity is also recorded. Inversely, SEF neurovascular activity measured by fUS imaging was found to be a robust predictor of specific variations in pupil diameter over short and long-time scales. Furthermore, we directly manipulated pupil diameter and CBV in the SEF using reward modulations. These results bring a novel understanding of the physiological links between pupil and SEF, but it also raises questions about the role of anterior cingulate cortex (ACC), as CBV variations in the ACC seems to be negligible compared to CBV variations in the SEF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9135265PMC
http://dx.doi.org/10.1371/journal.pbio.3001654DOI Listing

Publication Analysis

Top Keywords

pupil diameter
20
pupil
9
supplementary eye
8
eye field
8
medial prefrontal
8
sef
8
changes pupil
8
prefrontal cortex
8
pupil dynamics
8
fus imaging
8

Similar Publications

Increased attention towards progress information near a goal state.

Psychon Bull Rev

January 2025

Department of Psychology, McGill University, 2001 Av. McGill College, Montréal, QC, H3A 1G1, Canada.

A growing body of evidence across psychology suggests that (cognitive) effort exertion increases in proximity to a goal state. For instance, previous work has shown that participants respond more quickly, but not less accurately, when they near a goal-as indicated by a filling progress bar. Yet it remains unclear when over the course of a cognitively demanding task do people monitor progress information: Do they continuously monitor their goal progress over the course of a task, or attend more frequently to it as they near their goal? To answer this question, we used eye-tracking to examine trial-by-trial changes in progress monitoring as participants completed blocks of an attentionally demanding oddball task.

View Article and Find Full Text PDF

Tell me what to expect: how instructions affect the pain response of patients with chronic myofascial pain with referral.

J Oral Facial Pain Headache

December 2024

Neuroscience of Emotion Cognition and Nociception Group (NeuroCEN Group), Faculty of Odontology, Complutense University of Madrid, 28040 Madrid, Spain.

The aims of the study are to analyze the influence of pain and no pain expectations on the physiological (electromyography (EMG) and pupillometry) and cognitive (Numerical Rating Scale (NRS)) response to pain. Pain expectation and no pain expectation situations were induced by employing instructional videos. The induction of pain was performed by palpating the masseter with an algometer in a sample of 2 groups: 30 healthy participants (control group) and 30 patients (Temporomandibular disorders (TMD) group) with chronic myofascial pain with referral in the masseter muscle (Diagnostic Criteria for Temporomandibular Dissorders (DC/TMD)).

View Article and Find Full Text PDF

Normalization of Retinal Birefringence Scanning Signals.

Sensors (Basel)

December 2024

Ophthalmic Instrumentation Development Lab, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Wilmer 233, 600 N. Wolfe St., Baltimore, MD 21287, USA.

Signal amplitudes obtained from retinal scanning depend on numerous factors. Working with polarized light to interrogate the retina, large parts of which are birefringent, is even more prone to artifacts. This article demonstrates the necessity of using normalization when working with retinal birefringence scanning signals in polarization-sensitive ophthalmic instruments.

View Article and Find Full Text PDF

Purpose: A relative afferent pupillary defect (RAPD) is a characteristic clinical sign of optic neuritis (ON). Here, we systematically evaluated ultrasound pupillometry (UP) for the detection of an RAPD in patients with ON, including a comparison with infrared video pupillometry (IVP), the gold standard for objective pupillometry.

Materials And Methods: We enrolled 40 patients with acute (n = 9) or past (n = 31) ON (ON+), 31 patients with multiple sclerosis (MS) without prior ON, and 50 healthy controls (HC) in a cross-sectional observational study.

View Article and Find Full Text PDF

Pupil responses are commonly used to provide insight into visual perception, autonomic control, cognition, and various brain disorders. However, making inferences from pupil data can be complicated by nonlinearities in pupil dynamics and variability within and across individuals, which challenge the assumptions of linearity or group-level homogeneity required for common analysis methods. In this study, we evaluated luminance evoked pupil dynamics in young healthy adults (n = 10, M:F = 5:5, ages 19-25 years) by identifying nonlinearities, variability, and conserved relationships across individuals to improve the ability to make inferences from pupil data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!